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Abstract

Metagenomics has revolutionized our understanding of microbial 
communities, offering unprecedented insights into their genetic and 
functional diversity across Earth’s diverse ecosystems. Beyond their roles 
as environmental constituents, microbiomes act as symbionts, profoundly 
influencing the health and function of their host organisms. Given the 
inherent complexity of these communities and the diverse environments 
where they reside, the components of a metagenomics study must be 
carefully tailored to yield accurate results that are representative of 
the populations of interest. This Primer examines the methodological 
advancements and current practices that have shaped the field, from 
initial stages of sample collection and DNA extraction to the advanced 
bioinformatics tools employed for data analysis, with a particular focus 
on the profound impact of next-generation sequencing on the scale and 
accuracy of metagenomics studies. We critically assess the challenges 
and limitations inherent in metagenomics experimentation, available 
technologies and computational analysis methods. Beyond technical 
methodologies, we explore the application of metagenomics across 
various domains, including human health, agriculture and environmental 
monitoring. Looking ahead, we advocate for the development of more 
robust computational frameworks and enhanced interdisciplinary 
collaborations. This Primer serves as a comprehensive guide for advancing 
the precision and applicability of metagenomic studies, positioning 
them to address the complexities of microbial ecology and their broader 
implications for human health and environmental sustainability.
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Experimentation
The choice of an appropriate sample collection method, preservation 
technique and sequencing workflow is necessary to form a reliable 
foundation for downstream metagenomic preprocessing and analy-
sis. Given that each step can introduce bias17, the entire process from 
sampling through laboratory analysis should be carefully designed and 
executed18–22. Different standardized protocols are required depending 
on whether microbiome samples are sourced from host-associated or 
environmental sources. Collected samples must be handled carefully 
before being transported and stored diligently to maintain the integ-
rity of metagenomic information prior to DNA extraction. After DNA 
extraction, library preparation steps including DNA fragmentation, end 
repair, adapter ligation and sequence indexing are required to render 
the sampled DNA compatible with the sequencing platform being 
used. We discuss the experimental protocol to prepare a metagenom-
ics sample for bioinformatics analyses below; for an overview of the 
experimental workflow, see Fig. 2.

Study design
A rigorously designed study maximizes the potential for generating 
high-quality, reproducible data and ensures that the resulting conclu-
sions are scientifically robust and defensible. The study design must 
be carefully aligned with specific research objectives, as it directly 
impacts the validity and interpretability of results. Researchers should 
select the most appropriate design based on the study’s goal, which 
can range across human, animal and environmental studies. Observa-
tional studies monitor a subject without intervention to reveal natural 
microbiome variations. Cross-sectional studies provide a snapshot 
of the microbiome at a single time point, which can be useful to find 
associations between the microbiome and specific outcomes (such 
as health outcomes). Case–control studies compare microbiomes 
between individuals with a condition and those without, identifying 
condition-linked differences. Longitudinal studies track microbiome 
changes over time, offering insights into temporal dynamics. Finally, 
randomized controlled trials — the gold standard for causal inference — 
rigorously assess the effects of specific interventions by minimizing 
biases. After selecting the appropriate study design, it is critical to 
estimate the necessary sample size that will give sufficient statistical 
power to detect any expected effects. This process can be achieved 
through a power analysis, using effect size estimates from pilot studies 
or existing literature23,24.

Microbiome sample collection
Several factors should be considered for sample collection: whether 
the sample is representative of the study’s objective; the potential for 
contamination from extraneous sources or cross-contamination; the 
practicality of sample collection, such as sampling costs, convenience 
and efficiency; and the nature of positive and negative controls. We 
consider these aspects below for various different types of microbial 
community samples.

Human microbiome samples. The majority of human microbiome 
studies have analysed the gut microbiome using faecal specimens 
owing to their large bacterial biomass and ease of collection9,10, 
although many other tissue types and specimens have been inves-
tigated, including human milk25, tumours26, the respiratory tract27, 
the vaginal environment28,29, the urinary tract30, skin31 and saliva32. 
Priorities when collecting these samples include maximizing patient 
comfort and compliance while also ensuring robust preservation of 

Introduction
Metagenomics is an interdisciplinary field encompassing experimental 
and computational methods for analysing the genomic content and 
functional potential of microbial communities. Metagenomic studies 
typically begin with the collection of an environmental sample of inter-
est, such as soil, water, blood or stool. After collection, the total DNA 
within the sample is extracted and sequenced using whole-genome 
shotgun sequencing to generate reads originating from random 
genomic loci, ultimately generating a metagenomic profile to obtain 
a more extensive understanding of the microorganisms in the sample. 
This approach contrasts with amplicon-based approaches for profiling 
bacteria that selectively amplify and sequence the 16S and 18S small 
subunit ribosomal RNA (SSU rRNA) marker genes (Supplementary 
Boxes 1 and 2).

Metagenomics originally emerged as a powerful tool for explor-
ing the extensive microbial diversity within environmental samples 
such as soil1 and water2, providing unprecedented insights into the 
complexity and function of microbial communities in their natural 
habitats. As the field has evolved, metagenomics has become a foun-
dational methodology, driving advances in microbial community 
research, and has been applied to critical areas such as human health, 
food safety, agriculture and biotechnology. Early metagenomic meth-
ods relied on Sanger sequencing, which involves the cloning of ran-
domly fragmented DNA into culturable bacteria3. Current methods 
are based on next-generation sequencing (NGS), which has dramati-
cally reduced the cost per sequenced base by several orders of mag-
nitude and increased accessibility for metagenomic data production 
(Fig. 1). Improved affordability has catalysed the launch of numerous 
global-scale metagenomics initiatives4–7, which have been pivotal for 
discovering novel microorganisms and enhancing our understanding 
of how microorganisms interact with their environments.

Despite the advancements made for metagenomic studies, the 
absence of standardized protocols for sample processing currently 
limits reproducibility8 as the quality and quantity of extracted DNA 
are greatly influenced by the methods used for sample collection and 
DNA extraction8–10. Contamination poses an additional challenge, par-
ticularly in low-biomass samples11 or those affected by environmental 
factors such as extreme climates, in environmental metagenomics 
studies12. The choice of sequencing technology further constrains 
sample preparation13,14. Additionally, the lack of consistent stand-
ards across reference databases leads to incomplete and inconsist-
ent records15,16. Enhancing experimental protocols, computational 
methods and analytical approaches remain active areas of research, 
and efforts are underway to standardize the collection and process-
ing of diverse metagenomic samples to mitigate contamination, 
address issues with low-biomass samples and ensure more robust 
metagenomic analyses.

In this Primer, we offer an overview of essential metagenomics 
concepts and describe current practices for the generation and analysis 
of metagenomics data, the applications of metagenomics, initiatives to 
improve metagenomic research and the future scope of the metagen-
omics field. We also review the current limitations of the experimental 
and computational methods used in metagenomic studies and discuss 
possible strategies to mitigate these issues. Finally, we emphasize the 
need for the synergistic design of the experimental and computational 
components of metagenomics experiments, as well as collaborations 
between basic science and applied practice, to facilitate novel applica-
tions of metagenomics in areas such as environmental monitoring, 
agriculture, biotechnology and medicine.
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bacterial communities. Challenges of both inpatient and outpatient 
sample collection include the need for freezing methods for sample 
preservation, contamination, low-biomass samples and availability 
of hospital resources33. In the context of faecal specimens, studies 
evaluating aspects of collection protocols such as the stabilization of 
samples and freezing methods have reported varied results on how 
DNA composition is impacted by different preservation methods; 
however, freezing freshly collected stools remains a gold standard to 
yield a reliable taxonomic resolution16,33. Commercial products are 
available for at-home stool collection; self-collection of the first bowel 
movement of the day is usually recommended16 along with immediately 
freezing the sample or storing it in a preservation solution34.

Non-human animal samples. In animal studies, sample collection 
varies depending on the study’s objective, the tissue or specimen of 

interest and the host species. Faecal sample collection, rectal swab-
bing and post-mortem sampling of the intestinal contents of the host 
animal are options for gut microbiome studies. There is debate in the 
field about the interchangeability of sampling strategies. For example, 
in birds and reptiles there is an ongoing debate regarding the suitability 
of swabbing the cloaca to sample the gut microbiome35,36, given the 
convergence of the urinary, reproductive and gastrointestinal tracts 
at that site. In mice and rats, faecal pellets and caecal contents col-
lected at sacrifice are common samples for analysis. The non-invasive 
collection of faecal pellets facilitates repeatable longitudinal studies 
preventing bias in statistical interpretations37, whereas caecal contents 
yield a more comprehensive profile of the gut microbial community 
but require euthanization37. Therefore, considering the experimental 
question and the type of study required is important when selecting 
the appropriate sampling method.
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Fig. 1 | Timeline of microbial discovery and the 
development of metagenomic analysis. From the 
findings of early microbiology and advancements in 
sequencing technology, the field of metagenomics has 
grown to encompass the development of metagenomic 
databases, tools and organizations dedicated to 
the field of microbial and metagenomic discovery. 
NGS, next-generation sequencing.
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Environmental samples. Environmental samples for metagenomics 
include air samples, swabs of surfaces, and water and soil samples. Air 
sampling typically involves passing air through filters of various sizes 
to enrich for airborne microorganisms38–40. This method is particu-
larly challenging because of the low bacterial biomass of the resultant 
samples41 and because weather conditions such as wind, temperature 
or humidity can influence the microbial community yielded by this 
method42. Surface samples, such as samples of frequently touched 
surfaces in urban regions, can be collected using flocked swabs6. The 
composition of microbial communities obtained by this method can 
be influenced by variables such as surface type, cleaning frequency and 
human activity43. By contrast, water samples should be collected at a 
pre-specified depth and filtered upon collection44,45. Soil samples should 
be collected using sterilized standard tools and stored in a sterile bag. 
Soil sampling should consider the spatial and temporal variability of the 
sampled soil environment. For example, the density of microbial popu-
lations in the topsoil and subsoil differ, resulting in profile variations 
between these sampled communities. It is therefore important to note 
that microbial profiles can vary greatly across sample locations and sea-
sons. To control for these variations, standardizing sampling protocols 
to sample across multiple time points and locations can capture natural 
microbial fluctuations; further, adjusting for environmental metadata 
(such as temperature, humidity or nutrient concentration) can further 
ensure that observed differences reflect true biological or environmental 
variations. Our recommendation is for researchers to choose a sampling 
method that minimizes the effects of contamination by maintaining a 
consistent sampling strategy throughout the study and to collect nega-
tive control samples, such as swabs of sampling equipment, air or areas 
adjacent to the sampled area, depending on the method used.

Sample handling, transport and storage
As microbiome communities are living and metabolically active 
meta-organisms, samples should be frozen or inactivated immediately 
after collection and then maintained under stable conditions until DNA 
extraction. Temperature fluctuations34,46, oxygen exposure and multi-
ple freeze–thaw cycles46 should be avoided as these can compromise 
DNA and RNA integrity, affecting the metagenomic profiles of microbial 
communities47. Multiple freeze–thaw cycles can also bias sequencing 
results by selecting for harder-to-lyse bacteria.

The gold-standard method for sample handling after sterile 
collection is snap-freezing in liquid nitrogen, followed by storage at 
–80 °C. However, this is often not possible in field studies and many 
alternative methods for sample stabilization and storage have been 
evaluated48–51. These include preservation buffers such as RNAlater, 
ethylenediaminetetraacetic acid (EDTA) and ethanol-based or guani-
dine isothiocyanate-based52 stabilizing agents, which are available in 
various commercial kits. When using stabilizing reagents, it is impera-
tive to maintain a proper stabilizer to sample ratio and to thoroughly 
mix the stabilizer and sample. The choice of stabilizing solution, storage 
time and storage temperature can affect sample degradation, even for 
samples that were transferred immediately to –80 °C. For example, 
the efficiency of stabilizers can fluctuate between metagenomic sam-
ples, influencing the identified taxonomic composition of a microbial 
community as shown in faecal specimens53. Additionally, prolonged 
storage54 or fluctuations in temperature46 can potentially compromise 
the integrity of the microbial community and bias downstream analyses, 
as has been seen in pig faecal55 and sewage samples56. Thus, the optimi-
zation of methods used to ensure stability in metagenomic samples is 
important to ensure reliable interpretation of microbial communities.

a  Sample collection and storage b  DNA extraction c  Library preparation and sequencing

d 
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Fig. 2 | Experimental protocol for metagenomics experiments. 
a, Metagenomic samples, such as environmental samples from soil or water, 
or samples from the microbiome of organisms, are collected and either stored or 
processed immediately. b, DNA from the sample is extracted using physical 
or enzymatic lysis. c, A DNA library is constructed. Multiple samples can be 

sequenced together (multiplexed) by labelling samples with DNA barcodes. 
Bulk DNA is sequenced using whole shotgun sequencing. d, Sequencing 
reads undergo quality control checks and preprocessing. e, Demultiplexing 
separates sequences by DNA barcode, and sequences are then processed using 
bioinformatics analyses.
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To ensure reproducibility, details of preservation methods and 
storage temperatures should be included in study metadata when 
possible. Additionally, this information should be uploaded to data 
repositories, such as protocols.io57 and STAR methods58, to allow for 
broad use by the research community17. Freeze–thaw cycles should 
be avoided by aliquoting samples prior to long-term cryopreserva-
tion, and appropriate negative and positive controls should always be 
included for data accuracy and potential bias quantification. Although 
bias due to preservation methods is unavoidable, careful considera-
tion of sample storage and downstream bioinformatics pipelines can 
minimize its overall impact on the research objective.

DNA extraction
DNA extraction (Fig. 2b) involves the lysis of microbial cells and the 
isolation and purification of the now-accessible DNA. Among all sample 
preparation steps, the DNA extraction methodology might have the 
greatest impact on study variability due to unique biases in different 
microbial lysis approaches18,59–61. The type of DNA extraction method 
used is dependent on the type of sequencing platform that will be used 
(short-read or long-read). A bead-beating step should be used for the 
extraction of samples for short-read sequencing to ensure the effective 
lysis of Gram-positive bacteria and fungal cells and reduce the hands-on 
extraction time21,50,60–63. Conversely, enzymatic lysis techniques should 
be used for samples for long-read sequencing as mechanical lysis meth-
ods such as bead-beating result in DNA shearing64,65, although there are 
still unresolved issues with respect to enzymatically lysing fungal cells66. 
Recent advancements have enabled the production of long reads from 
DNA extractions, which has led to the development of novel protocols64 
and benchmarking studies54,66,67 that take these new capabilities into 
account. DNA extraction kits or methods such as phenol–chloroform 
or CTAB extractions use different techniques to increase the DNA yield 
and remove enzyme inhibitors from their samples. Benchmarking stud-
ies have been performed within and across different environmental 
samples in order to identify the best DNA extraction approaches for 
short-read metagenomics51,59,61–65; although some studies recom-
mend particular kits or approaches for certain types of environmental 
samples, no single kit or approach has been identified as best.

Incorporating negative controls is crucial for detecting contami-
nation across sampling and DNA extraction stages, which might other-
wise lead to erroneous background detection of microorganisms and 
antibiotic resistance genes66. Using a field blank (filling a sampling tube 
with molecular-grade water) effectively captures potential contamina-
tion sources within the workflow. Additionally, positive controls (such 
as a mock community of bacteria processed as a separate sample) or 
internal standards (whole cells or exogenous DNA or RNA added to 
the sample matrix) should be included to identify potential biases in 
sample concentration, DNA extraction and bioinformatics analyses.

Library preparation and sequencing
After DNA extraction, the library preparation process (Fig. 2c) converts 
raw DNA extracts into labelled libraries ready for sequencing on the 
platform of choice67. Short-read library construction generally includes 
four main steps: DNA fragmentation into smaller, random, overlapping 
fragments using either sonication or enzymatic methods68; fragment 
end repair; ligation of pair-end or single-end adapters; and indexing69. 
Indexing allows multiple samples to be combined in a single sequenc-
ing run, reducing the monetary cost per sample and increasing the 
throughput per run. Indexed libraries are normalized and pooled to 
equimolar concentrations prior to sequencing70.

Sequencing platforms. Illumina NGS platforms are often used for 
sequencing in metagenomic studies for their high-throughput and 
high-accuracy generation of short reads (ranging from 50 to 300 bp). 
These platforms are highly parallelized, allowing for the simultane-
ous sequencing of many DNA fragments, and have been successfully 
applied to shotgun metagenomics research to date70. These platforms 
are ideal for tasks such as variant detection, gene expression analysis 
and metagenomic profiling, where throughput and cost are paramount 
considerations. The established infrastructure surrounding short-read 
technologies, including robust analysis pipelines, further strengthens 
their appeal for high-throughput applications.

Long-read sequencing technologies such as Nanopore (Oxford 
Nanopore Technologies (ONT)) and PacBio (Pacific Biosciences) can 
produce reads several hundred kilobases in length and have been suc-
cessfully applied for metagenomics research. These approaches allow 
real-time data acquisition as they can generate ultra-long reads that can 
be used to generate full-length mRNA or viral sequences. This allows 
direct sequencing from native DNA, reducing error rates and allowing 
solving complex region sequences. Long-read sequencing excels in 
providing comprehensive genome assemblies, accurate mapping of 
complex regions and identification of large structural variants. This 
technology can sequence native molecules without amplification, 
thereby avoiding PCR-induced biases and preserving epigenetic modi-
fications, making it valuable for specific applications such as de novo 
assembly and isoform identification. For example, when investigating 
the genetic context of antibiotic resistance genes and their association 
with mobile genetic elements or host organisms, long-read sequencing 
offers superior accuracy owing to the reads spanning larger genomic 
regions71,72, thereby reducing the bioinformatics biases commonly 
introduced by short reads73. Despite these advantages, Nanopore 
sequencing platforms exhibit a higher average base error rate (4–10%) 
compared with Illumina technologies (approximately 0.1%)74 and Illu-
mina platforms generally outperform Nanopore sequencing in terms 
of read yield. Advancements in long-read sequencing technologies 
such as the Nanopore PromethION sequencing platform75,76, the R10.4.1 
flow cell and HiFi sequencing using the PacBio Sequel II system have 
been used to address limitations regarding the  sequencing depth, 
error rate and overall sample coverage in metagenomic research77.

When selecting a sequencing platform, researchers must consider 
the goals of their study, the level of genomic complexity of their sam-
ples and the balance between cost-efficiency and data accuracy. The 
cost disparities between short-read and long-read sequencing can be 
substantial, with the cost of long-read platforms typically increasing 
several times per gigabyte of data generated71. This difference arises 
from the longer duration of runs and the greater complexity of library 
preparation and sequencing chemistry for long-read sequencing71,72. 
Consequently, although long-read sequencing provides deeper 
insights into genomic architecture, its higher per-unit cost can be 
prohibitive for large-scale projects. To avoid these limitations, hybrid 
sequencing approaches have gained traction by integrating the accu-
racy and cost-efficiency of short reads with the long-range continu-
ity of long reads, thus offering a practical compromise and enabling 
high-quality genome reconstruction at a reduced cost73,77.

Library preparation and sequencing. Library preparation for Illu-
mina sequencing can be classified into PCR-based and PCR-free meth-
ods. PCR-free methods typically require a minimum DNA input of 
approximately 25 ng, whereas PCR-based library preparation is flex-
ible in terms of DNA input, although it can introduce biases due to the 
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PCR amplification process. After selection and the preparation of the 
library, adapter-ligated DNA molecules are immobilized onto the sur-
face of a flow cell, which is coated with oligonucleotides complemen-
tary to the adapters. These DNA molecules are then amplified through 
a process known as bridge amplification77–79 and sequenced using an 
optical detection method. Illumina’s NGS platforms offer single-read 
sequencing, which sequences DNA from one end of a fragment, and 
paired-end sequencing, which captures both ends of a DNA fragment80.

The effectiveness of long-read sequencing heavily depends on 
the library preparation step. Over-shearing during preparation can 
compromise read length and quality. Specialized kits are available for 
library preparation. In ONT’s DNA by ligation, Rapid and 16S library prep 
kits, DNA is sheared to fragments longer than 8 kb, end-repaired and 
ligated with protein–conjugate adapters, followed by a conditioning 
step before sequencing81. PacBio’s SMRTbell library prep kit involves 
ligating universal hairpin adapters to sheared or amplified DNA 
fragments, preparing them for high-fidelity, long-read sequencing82.

One of the main advantages of long-read sequencing options 
such as nanopore sequencing and PacBio’s single-molecule real-time 
sequencing is their ability to produce reads that span complex genomic 
regions. In nanopore sequencing, bases are called when DNA passes 
through a nanoscale protein pore, generating fluctuations in electric 
current from which canonical and modified nucleotides can be identi-
fied in a context-dependent manner83. By comparison, single-molecule 
real-time sequencing has two modes: circular consensus sequencing 
for highly accurate long reads (HiFi reads); and continuous long-read 
sequencing for long reads where half of the reads exceed 50 kb in 
length84,85. These technologies offer considerably longer read lengths 
than Illumina’s NGS platforms, although they come with trade-offs, such 
as the context dependency of base calls, which leads to a higher error 
rate for nanopore sequencing, and the need for repeated base calling 
to build a consensus, which leads to higher costs for single-molecule 
real-time sequencing.

A variant of paired-end reads can be generated using high- 
throughput chromosome conformation capture (Hi-C), a technique 
initially developed to study the three-dimensional organization of 
chromosomes in which paired reads serve to link genomic regions that 
are in proximity within the cell. This arrangement results in some Hi-C 
pairs spanning extensive genomic regions as distant DNA segments 
come into close proximity within the cellular milieu. The combina-
tion of shotgun sequencing and Hi-C has led to the development of 
metagenomic Hi-C (metaHi-C)86,87, which involves shotgun extraction 
of genomic fragments from a microbial sample, along with a Hi-C exper-
iment generating DNA–DNA proximity ligations between loci within 
the same physical cell, thus enabling the linking of contigs assembled 
from the shotgun sequencing.

Sample multiplexing is a common practice in metagenomic data 
preprocessing for conducting high-throughput and cost-effective 
analyses of several microbial communities. A metadata file contain-
ing details of individual indexes and their corresponding samples is 
essential for accurate demultiplexing. In addition, indexes should be 
designed based on error-correcting bioinformatics methods such as 
CD-HIT88, DNACLUST89 and Shepherd90 to mitigate misassignment of 
reads due to sequencing errors79.

Results
The initial stages of metagenomics data analysis include preproc-
essing and quality control steps, including assessing read coverage, 
depth analysis in relation to a reference genome, assessment of contig 

completeness and additional determination of contamination levels 
in assembled contigs. The bioinformatic analysis of metagenomic 
data then moves onto more computationally demanding tasks such 
as metagenomics assembly and functional analysis of microbial com-
munity, which require advanced computational infrastructure such 
as high-performance computing clusters for efficient data processing. 
Here, we explore an array of strategies and bioinformatic tools com-
monly used for efficient data processing and metagenomic analysis, 
and discuss challenges and mitigation strategies to obtain reliable 
results effectively. Commonly used analytical tools for metagenomic 
analyses are presented in Supplementary Table 3.

Quality control of metagenomic data
Before quality control, a demultiplexing step is essential for distin-
guishing individual samples based on the unique indexes incorporated 
into the reads during library construction. Tools for demultiplexing 
have been developed, including Flexbar91,92 and Ultraplex93, among 
others94–99.

The stochastic process of whole-genome shotgun sequencing on 
metagenomic samples can introduce biases when performing metagen-
omic assemblies, making it challenging to accurately reconstruct 
genomes within a sample. Therefore, it is important to assess the quality 
of the raw sequencing data after demultiplexing. Read quality is meas-
ured using the Phred quality score, provided by the sequencing platform 
used, which is based on the probability that a base was sequenced incor-
rectly. Low-quality reads — those with a Phred score <30 — often contain 
technical artefacts such as sequencing errors, PCR artefacts and adapter 
sequences, and should be eliminated using quality control and data 
clean-up tools such as FastQC, PRINSEQ100, Trimmomatic101, BBTOOLS 
and others102. These tools leverage both the quality information pro-
vided by sequencing instruments and databases containing collections 
of adapters and primer sequences to facilitate the removal of sequenc-
ing adapter sequences and investigate read sequences for anomalies, 
such as the over-representation of k-mers (a sign of contamination or 
genomic repeats that can lead to complex metagenomic assemblies). 
They also assess the read length, quality scores, GC content and number 
or percentage of ambiguous bases. Post-trimmed reads that fall below 
a predefined threshold length are discarded.

Alternative quality control methods are used for long sequencing 
reads103–106. For example, the NanoFilt tool filters long sequencing reads 
based on common parameters such as average read quality, length 
and GC content104, and LongQC103 assesses the quality of long reads 
by evaluating the proportion of atypical reads — known as ‘nonsense 
reads’ — potentially generated from low-quality pores. Reads derived 
from the host genome or from other unwanted sources of contami-
nation must be removed; automated decontamination tools such as 
DeconSeq105 and KneadData streamline this process.

Metagenomic assembly
Analyses can be performed directly on individual reads derived from 
metagenomic samples; however, the assembly of reads into individual 
contigs and metagenome-assembled genomes (MAGs) is often pref-
erable as this provides higher resolution (more detailed and accurate 
differentiation among species and strains) of the genomic content of 
microbial communities and enables improved functional annotation102 
(Fig. 3, left side).

Contig assembly. Metagenomic assembly tools largely employ exten-
sions of assembly algorithms developed for isolated genomes that 
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have been adapted to the uneven coverage and species/strain diversity 
commonly found in metagenomic data. The majority of short-read 
metagenomic assemblers rely on a de Bruijn graph — an approach that 
constructs a graph composed of k-mers extracted from the reads107.

Genomic repeats create ambiguities that make it difficult to 
identify the path corresponding to the correct reconstruction of the 
genome. In single genomes, repeats can be identified and even resolved 
by analysing the depth of coverage within the assembly (the number 
of times each k-mer is seen in the reads). Short-read metagenomic 
assemblers have been extended and adapted to long-read sequenc-
ing technology. The metaFlye assembler108 computes k-mer frequen-
cies within a local neighbourhood in order to account for the varied 
coverage within metagenomic samples, in contrast to the long-read 
single-genome assembler Flye109. Similarly, hifiasm-meta110 extends the 
hifiasm tool107 by adjusting the criteria for removing short and chimeric 
reads to account for the potentially low coverage of some genomes in a 
sample. hifiasm-meta and hifiasm were specifically developed for the 
HiFi technology from Pacific Biosciences. Another approach developed 
for the assembly of metagenomic data from high-quality long reads is 
metaMDBG111, which builds the assembly around minimizers identified 
in reads. Minimizers112 are a strategy for summarizing genomic data in a 
small memory footprint, thus offering speed and memory advantages 
over de Bruijn graph approaches.

Hybrid assembly approaches combine the precision of short reads 
with the extended coverage of long reads and offer a powerful solution 
for metagenomic assembly. In a recent study assessing ten environ-
mental metagenomic samples and in silico-generated data using seven 

assemblers (IDBA-UD113, MEGAHIT114, Canu115, metaFlye108, Opera-MS116, 
metaSPAdes117 and hybridSPAdes118), the hybrid approaches (Opera-MS 
and hybridSPAdes) consistently outperformed the others in terms of 
accuracy119. Benchmarking tools for hybrid assembly revealed that 
Unicycler exceeds MaSuRCA and SPAdes in producing contiguous 
genomes, particularly when combining Illumina and ONT data120.

Despite advancements with hybrid assembly approaches, chal-
lenges remain in using error-prone long reads for reconstructing 
high-quality genomes from complex metagenomes (for example, those 
isolated from sludge or wastewater samples). A novel haplotype-resolved 
hierarchical clustering-based hybrid assembly (HCBHA) approach has 
been developed for this application121. This method phases short and 
long reads into distinct haplotypes before assembling each bacterial 
genome individually, enabling the reconstruction of near-complete 
genomes from highly complex ecosystems.

Metagenomic samples can contain multiple strains of an organism, 
each differing from each other in just a few genomic locations122. In this 
case, specialized assemblers similar to tools that haplotype the human 
genome123 are required to assemble contigs from each strain. In contrast 
to the human genome, which has two haplotypes, the number of vari-
ants of a genome within a sample is not known a priori and is frequently 
larger than two. Initially, techniques for microbial community haplo-
typing have been developed in the context of viral quasispecies124. We 
discuss the general workflow of these strain resolution approaches in 
Supplementary Box 3.

We note that the multi-haplotype problem is an example of an 
‘NP-hard’125,126 problem, where algorithms for solving it efficiently are 
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and quantification
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... ...
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Fig. 3 | Metagenomic functional analysis. Metagenomic sequences are a 
common starting point for functional profiling and annotation (left side). Known 
genes can be directly aligned to a reference for alignment-based quantification 
(top row). Metagenomic sequencing reads can also be employed by ab initio 
gene finders to train models that identify open reading frames (ORFs) from 

input data followed by read quantification (middle row). Both alignment-based 
and ab initio methods can be used for functional profiling, which can be further 
analysed to explore biological insights (right side). Metagenome sequences can 
be assembled into contigs to facilitate gene discoveries by identifying novel ORFs 
and predicting gene function based on existing knowledge (bottom row).
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unlikely to exist and all practical approaches rely on heuristics that can-
not guarantee a correct answer. Such heuristics might miss strains or 
create a mosaic composed of combinations of haplotypes that do not 
actually occur in the sample being analysed. Further challenges arise 
from sequencing errors and the fragmented and incomplete nature of 
metagenomic sequencing data. An alternative is to define haplotypes 
or strains only with respect to a set of conserved genes, an approach 
that does not require a high-quality assembly127.

Contig binning. Contigs produced by a metagenomic assembler can 
originate from many different organisms and cannot be separated 
out a priori. These contigs can be organized into bins intended to 
represent individual organisms or taxa, relying on information that 
was not used during the assembly process. Contigs that have a simi-
lar coverage depth within a single sample, a similar coverage profile 
or a similar k-mer composition are usually assumed to be derived 
from a single genome.

Metagenomic binning tools typically annotate the contigs with 
a set of features (such as coverage and sequence composition) and 
then use clustering algorithms to construct the bins. For example, 
MetaBAT128 uses a modified k-medoid approach to cluster contigs 
based on a distance metric that combines tetramer similarity with 
abundance information. CONCOCT129 also incorporates both con-
tig abundance and sequence composition information within the 
context of a Gaussian mixture model to identify clusters and bins. 
The more recent VAMB130 relies on variational auto-encoders (a type 
of neural network) to cluster together contigs that are initially repre-
sented as points in a high-dimensional space. The embedding of contigs 
into this space is defined by their abundance across samples and their 
sequence composition. Some binning tools, such as MaxBin131 and 
Binnacle132, also incorporate mate-pair information in addition to 
coverage and sequence composition.

Bins that appear to represent nearly complete reconstructions 
of genomes from a metagenomic sample are known as MAGs to dif-
ferentiate them from genomes reconstructed from cultured isolates. 
For details on the validation of MAGs, see Supplementary Box 4.

Taxonomic characterization in metagenomics
Taxonomic classification and profiling involves identifying and estimat-
ing the relative abundance of known microbial taxa in a metagenomic 
sample using their sequenced genomes as references. This approach 
requires sequence data for the taxa of interest and differs from the 
metagenomic assembly approach above, which aims to discover 
novel microbial genomes from DNA fragments in the sample. Both 
taxonomic classification and profiling compare sequencing reads or 
contigs133 against a reference database, yet they differ in approach and 
purpose. Taxonomic classification uses taxonomic binning to assign 
individual reads or contigs to specific taxa, subsequently aggregating 
these assignments to estimate the relative abundances of taxa present 
in a sample. On the other hand, taxonomic profiling reports the rela-
tive abundances of taxa by comparing the overall sequence content 
of a sample against reference sequences. We discuss the methodolo-
gies for taxonomic classification and profiling of metagenomes and 
existing tools below.

Alignment-based strategies. Alignment-based methods for taxo-
nomic classification rely on algorithms to align sequencing reads 
against reference genomes (Fig. 4Bb,Bc). Modern versions of these 
algorithms generally employ a taxonomic binning approach to 

determine the potential location of each read on a reference genome, 
assign a score evaluating the quality of the alignment and assign taxo-
nomic labels to the aligned reads based on sequence similarity to the 
reference genome (Fig. 4Bd).

Alignment strategies using entire reference genomes represent 
the earliest algorithms used for taxonomic classification. An example 
is MEGAN, which aligns each read using BLAST and assigns them to 
their lowest common ancestor (LCA) — the ancestral node shared 
across a group of species from which the read may be derived133. The 
LCA is used because metagenomic read data often comprise short, 
fragmented sequences that might not align perfectly with known refer-
ence genomes, or might align to multiple reference genomes owing to 
high genomic similarities between closely related species or strains. 
By determining the LCA shared by multiple reference sequences that 
match a given query sequence, the LCA approach provides a robust 
method for taxonomic classification, effectively handling incom-
plete or divergent sequences, and can also be used in alignment-free 
or hybrid taxonomic profiling approaches (discussed below). The 
algorithm arranges less-conserved species closer to the ‘leaves’ and 
more-conserved species closer to the ‘root’ of a phylogenetic tree. 
Although MEGAN is optimized for short reads, the taxonomic binning 
strategy in MEGAN has been adapted to use long reads and assembled 
contigs as part of the MEGAN-LR134 tool (Supplementary Box 5).

Curated subsets of unique genes with a single copy number can 
be used as marker genes to enhance the computational efficiency of 
alignment-based methods. The goal of marker gene-based approaches 
is to create a reference database from marker genes alone to reduce the 
size of the reference database and optimize resource use (Fig. 4Ba). 
This approach was able to reduce the RefSeq dataset from 9.8 TB to the 
MetaPhlAn dataset of 10.41 GB, representing a 98.95% reduction. Marker 
gene-based approaches can vary widely in the number of marker genes 
used, ranging from a few dozen to millions; for example, MetaPhyler 
uses 31 protein-coding marker genes chosen for their efficacy in phylo-
genetic analysis, spanning 581 genera, 214 families, 99 orders, 46 classes 
and 27 phyla135. Another marker-based tool, PhyloSift, uses 37 ‘elite’ gene 
families alongside 4 supplementary sets encompassing 16S and 18S 
rRNA genes, mitochondrial gene families, eukaryote-specific gene fami-
lies and viral gene families, totalling approximately 800 gene families, 
with a predominant representation of viral families136.

The reduced reference database of marker genes gives a unique 
representation of specific taxa. The 16S rRNA gene, which is critical 
for bacterial and archaeal taxonomy, is ubiquitous across prokaryotic 
genomes and contains conserved regions that are essential for riboso-
mal function, as well as variable regions that allow for discrimination 
between different taxa. The V4 region of the 16S rRNA gene is frequently 
targeted for amplicon sequencing in microbial ecology studies for 
its high variability and species-level resolution, enabling research-
ers to identify microbial taxa and assess their relative abundances in 
environmental samples.

Some marker gene-based tools, including MetaPhlAn, align 
metagenomic reads to clade-specific marker genes to assess microbial 
relative abundances. The MetaPhlAn marker genes, which encom-
pass both bacterial and archaeal phylogenies, were selected from 
more than two million potential candidates identified from avail-
able genomes, based on their high conservation within clades and 
minimal similarity to genes outside those clades. MetaPhlAn compares 
metagenomic reads against the clade-specific marker gene refer-
ence database using nucleotide alignments, thus enabling efficient 
estimation of clade abundances. MetaPhlAn4, an updated version 

http://www.nature.com/nrmp


Nature Reviews Methods Primers |              (2025) 5:5 9

0123456789();: 

Primer

A  Alignment-free profiling

Reference genome database
(FASTA) Metagenomics reads

(FASTQ)

B  Alignment-based profiling

Ref 1
Ref 2
Ref 3
Ref 4
Ref 5
Ref 6

Ref 1
Ref 2
Ref 3
Ref 4
Ref 5
Ref 6

Marker genes

Ref 1
Ref 2
Ref 3
Ref 4
Ref 5
Ref 6

Ref 1 33%
Ref 2 29%
Ref 3 16%
Ref 4 10%
Ref 5 10%

Ref Greater than
threshold

Number of
matching
k-mers

8
7
4
3
3
1

✓
✓
✓
✓
✓

Ref 1 Ref 2 Ref 3 k-mers extracted
from all reads

k-mers extracted from
each reference genomeRef 4

Ref 1

Ref 1
Reads

Ref 2
Reads

Ref 3
Reads

Ref 4
Reads

Ref 5Reference genome
(or marker gene) Reads

Ref 6
Reads

Ref 2 Ref 3

Ref 4 Ref 5 Ref 6

Matching k-mers

Taxonomic profile

Ref 1 40%
Ref 2 36%
Ref 3 20%
Ref 4 4%

Taxonomic profile

Ref 5 Ref 6

Ab  Matching k-mers

Bb  Examining similarities between reads and each genome

Bc  Aligning reads to each reference genome

Bd  Examining aligned reads and generating taxonomic profile

Ac  Quantifying matching k-mers and generating taxonomic profile

Aa  Generating k-mers Ba  Optionally building or using database of marker genes

Finding subsequences in the reference genome that share some similarity 
with each read using a technique such as indexing

Calculating similarity for the 
complete sequence pair

e.g. dynamic programming table Compare the number of 
matches with threshold

Reference genome
(or marker gene)

Read

Matching k-mers

Examining the number of 
base matches

A A AC CT T

A CT G

G

A G G

Fig. 4 | Metagenomic taxonomic characterization using alignment-based 
and alignment-free methods. In both alignment-based and alignment-free 
profiling approaches, a public reference database is chosen for the input of 
the metagenomic data. A, Alignment-free profiling tools in general experience 
reduced computational burden: the generation of k-mers is performed on 
both the chosen reference dataset and the metagenomic sample of interest 
(panel Aa); k-mers generated from the references and sample are compared 
to identify matching k-mers (panel Ab); and matching k-mers are quantified to 

generate a taxonomic profile (panel Ac). B, Alignment-based methods can be 
more sensitive at the cost of increased computational burden: the metagenomic 
sequencing reads are aligned to a prebuilt marker gene-based reference database 
(panel Ba); similarities between reads and each genome are calculated using 
either indexing, dynamic programming or k-mer matching (panel Bb); and 
reads are then aligned to the reference database (panel Bc) to be quantified for 
taxonomic profiling (panel Bd).
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of its predecessor, introduces several enhancements, including the 
capability to construct custom marker gene databases from MAGs, 
enabling researchers to conduct more comprehensive and custom-
ized studies of microbial community diversity. Custom marker gene 
databases in MetaPhlAn4 are curated by combining marker genes 
from MAGs with those from reference genomes, thereby augmenting 
the accuracy and specificity of taxonomic profiling by incorporating 
genetic data from previously uncharacterized microbial taxa found 
in a metagenomic sample137.

Marker gene-based strategies, such as those that use marker genes 
based on operational taxonomic units (mOTUs; universally conserved 
single-copy protein-coding genes present across diverse taxa) have 
been employed to improve the resolution of taxonomic profiling of 
microbial communities. The use of pairwise alignments for clustering 
marker genes has successfully identified 10 marker genes appropri-
ate for creating more than 7,700 reference mOTUs for taxonomic 
classification and profiling138. Additionally, more than 20,000 refer-
ence mOTUs were recently added, identified through marker genes 
from approximately 150,000 MAGs139. It should be noted that marker 
gene-based approaches often exhibit increased specificity (true nega-
tive identification of species) over genome-based alignment strategies 
at the cost of decreased sensitivity (true positive identification of 
species), due to their dependence on conserved nucleic acid sequences 
to represent taxa138.

Alignment-free, k-mer-based strategies. k-mer-Based methods for 
taxonomic classification generate k-mer profiles from metagenomic 
data (Fig. 4Aa), compare them against those of reference databases 
to identify matching k-mers (Fig. 4Ab) — allowing reads or contigs to 
be classified to a corresponding reference genome without the need 
for an exact genomic index — and quantify shared k-mers to gener-
ate a taxonomic profile (Fig. 4Ac). These alignment-free strategies 
are less computationally intensive than alignment-based methods. 
k-mer-Based methods provide more scalable solutions by incorporat-
ing k-mer usage in techniques such as exact matching140, binning130, 
hashing algorithms141,142 and discriminative subsets143 (for more 
information about k-mer-based machine learning approaches, see 
Supplementary Box 6).

k-mer matching has been used to map query k-mers against refer-
ence k-mers, where the LCA of the genomes containing each k-mer is 
used for taxonomic profiling140. This approach can present challenges; 
for example, the k-mer matching program Kraken uses a majority vote 
strategy for classifying reads, which might result in suboptimal perfor-
mance at lower taxonomic rank levels due to high sequence similarities 
and sequencing errors. The Bracken tool was developed to overcome 
this sensitivity issue and probabilistically reassigns reads across the 
taxonomic tree, improving accuracy at finer taxonomic resolutions144.

k-mer-Based sketching approaches provide a more computation-
ally efficient alternative to k-mer matching. These methods condense 
large datasets into smaller ‘signatures’ while preserving the similar-
ity relationships of k-mers, thereby minimizing the computational 
resources required for taxonomic profiling141. For details on specific 
k-mer based sketching approaches, see Supplementary Box 7.

Hybrid strategies. Hybrid approaches to taxonomic characteriza-
tion offer a promising strategy for combining the strong precision 
and recall in taxonomic classification at the species and genus levels 
of alignment-based methods with the efficiency of alignment-free 
methods. For example, one hybrid approach145 uses MinHash, a hashing 

technique that uses subsamples of k-mers to estimate genomic similari-
ties, which is then coupled with alignment146. This combination allows 
Metalign to accurately profile metagenomic datasets by estimating the 
containment index — the likelihood that a given reference genome is 
present within a sample146. By reducing the size of the reference, this 
approach optimizes the alignment process for taxonomic profiling 
improving efficiency without compromising accuracy.

Short-read versus long-read taxonomic profilers. The use of 
short-read or long-read sequencing technologies has implications 
for the accuracy and resolution of taxonomic profiling. Long-read 
sequencing technologies can enhance taxonomic analyses by providing 
more comprehensive sequence information, improving the taxonomic 
resolution and accuracy of complex microbial communities147. A com-
prehensive benchmarking study assessing 11 taxonomic classification 
methods, including 5 designed specifically for long reads, showed that 
long-read classifiers generally outperformed short-read classifiers127. 
Short reads frequently produce false positives, particularly at lower 
abundances, and require additional filtering to achieve acceptable 
precision. By contrast, long-read methods such as BugSeq, MEGAN-LR 
and DIAMOND and the generalized method sourmash exhibit high 
precision and recall without requiring any filtering. Long-read meth-
ods also demonstrate superior performance for detecting species at 
low abundance levels; for example, these methods were able to detect 
species at 0.1% abundance with high precision in PacBio HiFi datasets, 
something that was more challenging for short-read methods.

Read quality can markedly impact the performance of long-read 
taxonomic profilers. Long-read datasets with a large proportion of 
shorter reads (<2 kb) resulted in lower precision and worse abundance 
estimates127. The study further demonstrated that long-read datasets 
provided superior taxonomic classification results compared with 
short-read datasets, particularly at finer taxonomic resolution, due 
to the greater contiguity of long-read assemblies. At both the species 
and genus levels, long-read datasets provided better detection metrics 
compared with short-read datasets71,127.

Finally, the ability of ONT platforms to provide real-time sequenc-
ing reads, which can be used immediately for taxonomic classification 
without compromising precision or sensitivity due to the assembly and 
binning process, presents an advantage over traditional methods that 
require lengthy culturing and molecular diagnostics148,149. This is critical 
for metagenomic applications in clinical settings where accurate and 
timely pathogen identification is critical.

Functional analysis of metagenomics
Metagenomic functional analysis refers to the process of analysing 
genomic sequences from metagenomic datasets to decipher the func-
tional capabilities and potential metabolic pathways within microbial 
communities in specific environments150,151. Functional analysis aims to 
uncover the capabilities and activities of these microorganisms, such as 
the biochemical pathways they use, the enzymes they produce and their 
roles in ecosystem processes. The first metagenomic functional analysis 
was carried out by cloning the functional genes isolated from envi-
ronmental DNA into Escherichia coli and analysing enzymatic activity 
using non-computational methods152. This study was followed by oth-
ers that demonstrated the presence of various microbial functions in 
environmental samples3,153,154. Large-scale studies of the human gut 
microbiome such as the Human Microbiome Project155 have highlighted 
that microbial functionalities are more conserved across cohorts than 
taxonomic composition. The variability in taxonomic units observed 
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across cohorts can present a reproducibility challenge for comparative 
metagenomic studies, as differences in taxonomic composition can 
complicate the identification of consistent patterns across studies, sug-
gesting a need to shift from taxonomic units to functional groups156,157. 
In this section, we discuss the functional analysis process.

Gene prediction approaches. Gene prediction approaches (Fig. 3, 
bottom row) identify potential genes from sequencing reads or assem-
bled contigs. The key challenge of gene prediction is discriminating 
whether genomic regions that resemble genes are indeed authentic 
protein-coding genes; in complete genomes, such regions are open 
reading frames (ORFs), whereas in metagenomic applications the frag-
mented nature of the data requires the consideration of incomplete 
ORFs. Early alignment-based tools such as CRITICA158 and Orpheus159 
infer gene presence by aligning query sequences to known protein 
databases (Fig. 3, top row); as a result, these approaches are only effec-
tive at detecting a subset of genes in a sample expressing previously 
characterized proteins. This limitation restricts their ability to uncover 
novel or unique genes due to their divergence from known sequences. 
More recent ab initio gene finders employ statistical models that are 
trained on known gene sequences to determine which ORFs are likely 
to be genes. These models analyse various features, such as k-mer 
frequencies, ORF length, GC content and sequence motifs to predict 
genes. Other methods such as hidden Markov models160–165, support 
vector machines166 and conditional random fields167 have also been 
employed in microbial gene finders to improve the accuracy of gene 
prediction.

The parameters of ab initio gene prediction models can vary across 
bacterial species and complicate gene prediction in metagenomic sam-
ples as the organism to which each ORF belongs is typically unknown. 
Tools such as MetaGene and its successor, MetaGeneAnnotator168, 
address this issue by focusing on species-specific features such as pat-
terns of ribosomal binding sites and di-codon usage in training their 
probabilistic models. This enhances the precision of gene prediction 
across metagenomic data168. Prodigal, another widely used tool for 
microbial gene prediction, leverages the start codon and ribosomal 
binding site motifs, GC content and hexamer usage patterns to build 
a model that can identify and annotate genes in microbial genomes169. 
Recently, deep learning tools such as CNN-MGP170 and Meta-MFDL171 
have been used for gene finding and demonstrated promising results.

Despite the numerous gene prediction tools available, no con-
sensus exists on a definitive gold standard. A benchmark study dem-
onstrated that ab initio methods generally surpass evidence-based 
tools, with performances varying across different organisms172. To 
further optimize gene prediction, the annotation tool MetaErg incor-
porates additional features such as signal peptides and transmembrane 
helices, which are implicitly contained in trained models, to enhance 
the filtering of predicted ORFs173.

Annotating functions in a metagenome. Functional annotation 
in metagenomics (Fig. 3, left side) involves computationally assign-
ing biological or functional information to metagenomic sequences, 
facilitating an understanding of the roles and activities of microbial 
communities within their environments. It essentially involves iden-
tifying and elucidating the functional potential of each gene, thereby 
expanding the knowledge base of gene functions and, potentially, 
discovering new genes or functions. Functional annotation comple-
ments functional profiling (covered in the next section) as it focuses 
not only on identifying known functions but also on predicting roles 

for previously unknown genes, whereas functional profiling quantifies 
the abundance of known genes in a sample (Fig. 3, middle row)173–179.

Comparing unknown genes against reference databases is a fun-
damental step in functional analysis. Orthology-based approaches 
such as eggNOG-mapper180 and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) KOALAtool181 leverage databases such as Clusters of 
Orthologous Groups (COGs)182 and KEGG183, respectively, to classify 
genes into evolutionarily related groups to facilitate gene function 
prediction using shared ancestry. Additionally, operational functional 
units, which group genes or gene products based on their func-
tional similarities, are emerging as a new benchmark for understanding 
the functional potential of microbiomes184. Other annotation tools that 
use structural similarity and incorporate clustering or transfer learning 
approaches include MorF185 and FunFams186. The tools ProtBERT187 and 
ProSE188 rely on sequence embeddings. Additional efforts have been 
made in the construction of protein families through databases such 
as Pfam189 and AGNOSTOS-DB190, which are instrumental in identifying 
proteins with related functions and elucidating unknown boundaries 
of functions.

Despite advancements in functional annotation tools, a signifi-
cant fraction of microbial functions cannot be properly annotated176. 
To increase the proportion of sequences with identified functions, 
it is important to adopt gene context-based methods beyond tradi-
tional orthology-based approaches such as FunGeCO and integrate 
the genomic environment surrounding a gene, thereby enhancing 
functional annotation184. Alternatively, the subsystems approach, 
exemplified by MG-RAST191, organizes gene families into subsystems 
within functional networks, thus enhancing our understanding of 
microbial metabolism. Moreover, deep learning-based methods, such 
as DeepFRI192, represent a competitive alternative, effectively combin-
ing sequences with structural features to substantially increase the 
coverage of functional information.

Functional annotation of metagenome sequences can serve as 
a valuable tool to predict and discover novel genes involved in meta-
bolic pathways and enzymatic functions, antibiotic resistance genes 
and CRISPR–Cas systems, valuable in different biotechnological 
applications193. Additionally, functional annotation enables the explo-
ration of metagenomic functional signatures across various environ-
ments, such as nitrogen cycles194, disease-specific microbiomes195 and 
virus–host microbiome interactions196.

Functionally profiling metagenomic data. Functional profiling 
elucidates the functions encoded by the annotated genes to under-
stand the functional dynamics and ecological roles of the diverse 
microbiota (Supplementary Table 1). This approach involves aligning 
query sequences against databases of sequences with known functions 
or employing non-alignment approaches, such as machine learning 
models trained on sequences with known functions. Some approaches 
operate directly on reads, whereas others are applied to the sequence of 
genes identified in the samples. The latter approach offers advantages 
as the analysis is performed on longer DNA segments, which reduces 
redundancy and improves analytic accuracy.

Alignment-based functional profiling methods use sequence com-
parison algorithms to compare the predicted amino acid sequences of 
genes with sequences in a reference database. For example, MG-RAST197 
uses BLAST to search against the M5nr database198, a curated collec-
tion of non-redundant protein sequences from the National Center 
for Biotechnology Information (NCBI), UniProt and KEGG. Addi-
tionally, BlastKOALA and GhostKOALA, which have been developed 
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specifically for the functional annotation of protein sequences in 
microbial genomes, perform searches against KEGG Orthology (KO) 
terms181. DIAMOND199, which is specifically designed for short reads, 
uses a seed search approach and double indexing to improve speed 
and accuracy when querying against databases such as the NCBI and 
KEGG. Sequence alignments can enhance the capabilities of align-
ment free-based profilers; for example, eggNOG-mapper180, which 
uses precomputed sequence clusters to facilitate comparisons, uses 
DIAMOND as one of its efficient sequence mapping options.

Tools using hidden Markov models, such as InterProScan200, have 
been developed to facilitate comparisons of genes against orthologies 
using precomputed sequence clusters, which is less computationally 
intensive than searching through all sequences in a database as in 
alignment-based strategies. For example, KOfamKOALA201 reduces 
the computational time of alignment-based programs by using 
HMMER/hmmbuild to produce profile hidden Markov models and 
implementing an adaptive score threshold to accurately delineate 
metabolic and regulatory functions.

Protein domains or motifs can be annotated to further evaluate the 
functional properties of microbial communities. Functional annotation 
can use protein domains to identify conserved regions and infer puta-
tive biological functions at a proteomic level, where proteins sharing 
similar domains are classified into protein families, providing evolu-
tionary insights into microbial communities. Proteomic information 
can be found in databases that store validated protein domains and 
families, such as Pfam189, UnitProt202 and SWISS-PROT203; tools such 
as HMMER204 and InterProScan200 can be used to search for domains 
to assign putative functions to protein sequences.

Pathway-based methods enhance functional analysis by annotat-
ing the pathways within metagenomic data through the identification 
and interpretation of gene functions, as well as protein and molecule 
actions. Such information can be particularly valuable because path-
ways might span multiple organisms, be partially represented or even 
serve as the foundation for constructing mechanistic models. These 
methods, which rely extensively on well-curated reference databases, 
not only improve our understanding of metabolic functions but also 
underscore the complex interplay within microbial ecosystems. 
For example, HUMAnN (HMP Unified Metabolic Analysis Network) 
annotates and reconstructs human metabolic pathways205 by map-
ping sequencing reads to reference genes or protein families that 
constitute known functional pathways, enabling the exploration of 
ecological and biogeochemical functions between the host and the 
environment. Newly developed tools such as gutSMASH206 profile 
known and predicted novel metabolic pathways by using metabolic 
gene clusters to conduct functional comparisons in different cohorts. 
Pathway-based databases include MetaCyc207, KEGG, KBase208 and 
DrugBank209.

Applications
Potential applications of metagenomics are broad, spanning from 
clinical applications such as pathogen surveillance and monitoring 
antibiotic resistance to applications in ecology such as studying the 
crucial ecological roles of microorganisms, analysing biodiversity, 
and assessing ecosystem functions and the impact of environmental 
changes. We discuss these applications below.

Microbiome–disease associations
Bioinformatic analysis of metagenomic sequencing data has become 
an important tool in understanding shifts in human microbiome 

composition associated with various health and disease states. This 
approach enables the precise identification of specific microbial taxa 
and functions linked to health conditions and the exploration of the 
complex dynamics of microbial interactions during disease progression.

Researchers often employ either a cross-sectional or a longitu-
dinal study design to understand the association between diseases 
and the microbiome. In a cross-sectional study design, a cohort with 
a specific disease is compared with a healthy control group. Char-
acteristics of the microbiota, such as taxonomic composition and 
functional profiles, are analysed and compared between groups to 
identify differences that might correlate with health status. Typically, 
the relative abundance of different taxonomic groups is evaluated 
to determine whether specific taxa correlate with disease status and 
statistical tests, and standard t tests and complex linear models are 
used to assess associations or differences between groups210. These 
techniques have been used successfully to find associations between 
the microbiome and both diseases of the digestive system and sys-
temic disorders210. For example, a decrease in butyrate-producing 
bacteria and an increase in functional groups responsible for sulfate 
reduction and oxidative stress resistance is seen in patients with type 2 
diabetes211. Similarly, in major depressive disorder, numerous path-
ways involved in amino acid metabolism were shown to be disrupted 
in the faecal microbiome212. In rheumatoid arthritis, both the oral 
microbiome and the gut microbiome are altered, with functional dif-
ferences in the redox environment and the transport and metabolism 
of iron, sulfur, zinc and arginine213.

Longitudinal study designs involve sequencing the microbiota 
at various time points during the progression of the disease to track 
changes in microbial composition over time and obtain insightful 
information into microbiome dynamics changes alongside disease 
progression. For example, longitudinal studies on the oral, lung and 
gut microbiota of patients with acute respiratory failure and lower 
respiratory tract infections performed across different hospitals have 
revealed distinct patterns of taxonomic and functional profiles; these 
studies then evaluated changes in these patterns in response to disease 
progression and treatment214,215.

Measuring microbial diversity can aid in revealing compositional 
differences in microbiota across different environments and samples. 
Statistical measures such as Shannon’s diversity index216 or bioinfor-
matics tools such as phyloseq217 have been developed to study micro-
bial diversity in metagenomic samples. For example, a study by Yin et al. 
used the Shannon index to evaluate the impact of gut microbiome 
diversity on mortality risk in patients with septic shock216. Using 
these statistical methods, researchers have identified correlations 
between low oral microbiome diversity and periodontitis218, as well 
as between low gut microbiome diversity and various ailments, rang-
ing from prediabetes219 to Crohn’s disease220. The practical applica-
tion of microbial diversity is often limited to conditions where the 
microbiome’s impact is well understood, and the use of alpha diversity 
indices221,222 to study the impact of the microbiome on health condi-
tions such Parkinson disease, multiple sclerosis and certain forms of 
depression has proved inconclusive results.

Despite significant taxonomic variability, the human gut micro-
biome often maintains a conserved functional profile223. Analysing 
metagenomic data at the gene and pathway levels can help researchers 
elucidate the mechanisms through which the microbiome interacts 
with host factors in disease processes. This analysis holds promise for 
clinical applications in both diagnosis and treatment. For example, the 
recent development of q2-predict-dysbiosis, a metagenomics-based 
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gut health evaluation tool described in a recent preprint article224, 
leverages microbial functions and interactions and has shown sig-
nificant improvements over most traditional taxonomy-based indices 
for the diagnosis of specific health conditions such as inflammatory 
bowel disease.

Functional analysis relies on the completeness and accuracy of 
functional units, such as genes, gene clusters or protein families, which 
require proper categorization and distinction within samples by utiliz-
ing information on genes and pathways, as well as assessing their abun-
dance levels. Bioinformatic tools such as Anvi’o225 or Picard can be used 
for this purpose for clustering contigs based on sequence similarity 
and annotating genes and metabolic pathways using reference-based 
alignment.

Clinical diagnosis using metagenomics
Conventional diagnostic techniques rely on culturing pathogens in 
selective media or detecting pathogen-associated biomarkers, and are 
therefore effective at identifying infections where suitable diagnostics 
are available. However, infections and their aetiologies are often com-
plex, polymicrobial or of unknown origin226,227. Clinical metagenomics 
can offer a more comprehensive solution to traditional methods by 
effectively unveiling the complex microbial composition of the human 
microbiome — particularly valuable for polymicrobial infections that 
are often severe and challenging to detect and treat using conventional 
methods228–230.

Metagenomic data can be used for monitoring antibiotic resist-
ance231,232, identification and surveillance of pathogenic strains233, 
tracking in-host microbiome evolution234, biomarker discovery235 
and detecting virulence factors and toxins of different environments 
in patients236. Information gathered from these strategies holds 
incredible potential for personalized medicine137,236–238. For example, 
clinicians can tailor treatment strategies more precisely by analysing 
the resistome of a clinical sample, reducing the risk of promoting antibi-
otic resistance239. Similarly, the detection of genes encoding toxins such 
as colibactin in complex biological samples from patient samples can 
serve as an early indicator of disease risk, such as colorectal cancer240,241. 
By integrating such detailed diagnostic information with insights into 
the complex microbial ecosystem of each infection, clinicians can more 
accurately predict clinical outcomes and tailor treatment strategies to 
individual needs228,229,242–245.

Although still in its infancy, metagenomics has proven to be 
highly effective in early pathogen diagnosis, offering a short detection 
time and a high sensitivity246. It shows improved clinical outcomes in 
diagnosing culture-negative sepsis and infections that are difficult to 
diagnose, such as pneumonia, severe diarrhoea and meningitis247–250. 
Clinical metagenomics has emerged as an important tool in under-
standing the associations between microbial composition and various 
pathologies, such as cystic fibrosis, inflammatory bowel disease and 
colorectal cancer251–253. Additionally, metagenomic strain profiling 
workflows can improve clinical diagnostics by providing tools to track 
strain-level variability within complex metagenomic datasets239,254. 
For example, metagenomic strain profiling is invaluable for moni-
toring engraftment and tailoring treatment strategies to individual 
needs in the context of faecal microbiota transplant239. Furthermore, 
metagenomics has a crucial role in identifying emerging and novel 
pathogens, a capability that has become increasingly important 
following the COVID-19 pandemic255–257.

Wide-scale implementation of metagenomics into clinical prac-
tice has lagged behind basic research applications, largely due to 

challenges associated with standardization, reproducibility, cost, 
slow turnaround time and regulations258. However, the declining 
costs, advancements of NGS technologies and the emergence of 
innovative computational tools can pave the way for advancing the 
field of clinical metagenomics. Standardization and validation of 
practices across clinical centres continues to present a significant 
challenge. In particular, standard operating procedures, the choice 
of DNA extraction methods, sample handling and computational 
analyses require high levels of standardization in clinical metagen-
omics. Moreover, divergent practices and protocols can adversely 
impact the interpretation of clinical metagenomic data influencing 
subsequent diagnostics.

Tracking the spread of disease and surveillance of pathogens
Traditional pathogen surveillance method strategies relying on cul-
tured isolates face challenges related to resource demands, including 
the need for extensive laboratory materials, infrastructure, skilled 
personnel and the time to obtain pure isolates. Metagenomics offers 
a promising alternative to these methods by enabling culture-free 
detection of known and previously undetected viruses, bacteria and 
fungi, and can also identify virulence and resistance determinants 
in microbiome samples257. As metagenomics techniques continue 
to advance, they hold the potential to identify and track threats to 
the health of humans and farm animals as part of a comprehensive 
One Health approach258.

Strain tracking, which involves the continuous monitoring 
of microbial strains over time and at different locations, has pro-
vided evidence of vertical transmission of microorganisms from 
maternal breast milk to the infant gut microbiome259. Strain tracking 
holds important clinical applications in the context of outbreaks of 
antibiotic-resistant pathogens in hospital settings. Metagenomics 
and other NGS approaches such as targeted whole-genome sequenc-
ing can be used to trace the spread of individual strains between 
patients, allowing healthcare facilities to respond appropriately with 
isolation measures and specific antibiotic interventions260. Bioin-
formatic pipelines, such as MIDAS261, StrainPhlAn262 and SameStr263, 
have been developed specifically for strain tracking and popula-
tion genomics across multiple samples. These tools are tailored for 
the taxonomic classification of reads from similar genomes and 
for detecting microorganisms of lower abundance where traditional 
taxonomic assignment methods might fail to differentiate sequences 
at the strain level.

Metagenomics can be used to monitor microbial communities for 
the presence of known and emerging pathogens by systematically ana-
lysing samples from diverse environments such as water, soil, sewage 
and air, facilitating the establishment of baseline microbial diversity 
data that can serve as reference for the surveillance of microbial tem-
poral trends. Notable examples and initiatives of pathogen surveillance 
are discussed in Supplementary Box 8. Eventually, metagenomics 
could be used for developing and implementing metagenomic-backed 
policies and acting as an early warning system for the emergence of 
new pathogens or antimicrobial resistance for improved public health 
outcomes56,264,265.

Environmental health monitoring and conservation
Metagenomics can offer powerful tools for identifying microbial com-
munities involved in processes such as nutrient cycling266,267, pollutant 
degradation and bioremediation268. Soil microbiomes, comprising 
bacteria and fungi, facilitate nutrient cycling by decomposing organic 
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matter and releasing essential nutrients such as nitrogen and phos-
phorus, with diazotrophic bacteria (such Rhizobium) enhancing 
soil fertility by converting atmospheric nitrogen into bioavailable 
ammonia269. Additionally, specific bacteria release organic acids, 
solubilizing phosphorus compounds to aid plant uptake, a critical 
process for agricultural productivity and soil health270. In pollutant 
degradation, bacteria such as Pseudomonas secrete extracellular 
enzymes and glycoconjugates that enhance the breakdown of organic 
pollutants, metabolizing hydrocarbons in contaminated soils into 
simpler, non-toxic compounds through oxidation, a process essential 
for mitigating the long-term accumulation of industrial pollutants271. 
Marine microalgae, such as Chlorella and Spirulina, have a significant 
role in bioremediation by biosorbing heavy metals and pollutants 
from wastewater, offering a sustainable solution for environmental 
clean-up272,273. Identifying microbial communities capable of degrad-
ing pollutants and elucidating the key degradation pathways would 
assist in the development of tailored bioremediation strategies to 
enhance our ability to remove a diverse array of environmental con-
taminants and perform real-time monitoring of microbial community 
dynamics during bioremediation processes274,275. Metagenomics can 
also be used to assess the health and biodiversity of ecosystems276,277, 
for example by monitoring microbial community changes to deter-
mine the impacts of human activity, climate change and other envi-
ronmental factors278. Microbial communities have a crucial role in 
supporting the health and resilience of animals, insects and plants, 
and metagenomics may be applied to support the conservation of 
endangered species279.

Environmental metagenomics can be used for disease surveil-
lance and outbreak prediction by monitoring microbial diversity in 
places such as hospitals, water plants and farms, allowing for early 
intervention257. It could also be used for to the discovery of new 
antibiotics from diverse environments, which is crucial for battling 
antibiotic-resistant bacteria280,281. Metagenomics studies of built envi-
ronments can provide insights into indoor air quality and pathogen 
dynamics282.

Sustainable agriculture
Understanding the soil microbiome is essential for sustainable agricul-
ture and managing soil health283. Potential applications of metagenom-
ics in this space could include investigating how plants interact with 
soil microorganisms to design microbial-based solutions for enhancing 
crop productivity, improving nutrient cycling and boosting disease 
resistance284,285. Metagenomics can also aid in the identification of soil 
microorganisms that are beneficial to crop species, in order to facilitate 
the development of biofertilizers and microbial inoculants and reduce 
chemical fertilizer use286,287. Soil metagenomics has been invaluable 
for studying the rhizosphere microbiome — the microbial community 
surrounding plant roots — helping pinpoint beneficial microorgan-
isms that suppress plant diseases to promote sustainable agricultural 
practices. For more about soil metagenomics and metagenomics in 
agriculture, see Box 1.

Reproducibility and data deposition
Following the first commercial high-throughput sequencer introduced 
in 2005 (ref. 288), the cost of high-throughput sequencing has greatly 
decreased, leading to a rapid increase in the amount of metagenomic 
data that are being generated and stored in public repositories289 
(Table 1 and Supplementary Table 4). Such repositories serve as a 
vital resource by facilitating the dissemination of a diverse array of 

publicly available data to the wider scientific community, including 
metagenomic sequencing data, sequence annotations, geospatial 
data and computational resources (see more about public repositories 
for raw metagenomics data in Supplementary Box 9). The reliability 
and robustness of metagenomic analyses fundamentally depend on 
the completeness and accuracy of reference sequences from genome 
databases (Table 2). Existing databases cover a range of different taxa 
and exhibit varying levels of completeness and annotation quality in 
genome assemblies.

For new users of metagenomics techniques, understanding what 
metadata need to be considered is crucial for ensuring comprehen-
sive and standardized reuse of existing data from public repositories. 
Metadata include varied information such as sequencing parameters, 
sample and collection, and quality control measures290,291, which are 
summarized in Supplementary Table 5.

The Genomic Standards Consortium292, BioProject and BioSample 
project293 are collectively focused on establishing standardized 
protocols and minimum information standards, streamlined data 
organization and enhanced metadata quality. By promoting uniform 
data organization and improving metadata quality, these groups 
aim to ensure that datasets are more accessible and comparable 
across studies.

Microbial reference genome resources
Microbial reference databases might include both complete and draft 
genomes78. However, specialized reference genome databases often 
implement rigorous quality control procedures to ensure that only 
assemblies meeting high standards of sequence and annotation qual-
ity are included. For example, the RefSeq database excludes assemblies 
derived from environmental samples owing to concerns about the 
accuracy of organism assignment and potential cross-contamination. 
Differences between reference sequence sources across databases 
are due to minor genomic variations among organisms and their 
genome organization, potentially leading to inconsistencies. Addi-
tionally, different databases can show conflicting taxonomic labels 
for identical species or strains15. These and other discrepancies can 
exist among commonly used reference sequence databases such 
as RefSeq294, Ensembl295 and the Pathosystems Resource Integra-
tion Center (PATRIC)296. Some species are uniquely represented in 
only one database, leading to a difference in genomic quality that 
cannot be reconciled by using another15. Inconsistencies and dis-
crepancies between sequence databases can affect the outcomes 
of bioinformatic analyses, limiting both the accuracy and reproduc-
ibility of metagenomic studies15. Researchers are therefore urged to 
meticulously evaluate both the quality of raw metagenomics data 
and the accompanying metadata to guarantee robustness and reli-
ability in their analyses. We suggest users consider the latest and 
most complete databases, such as those with regular updates such 
as RefSeq or the Genome Taxonomy Database (GTDB), remain con-
sistent with data analysis and avoid switching databases unless for a 
good reason; and remain cautious when comparing results generated 
from distinct database by double-checking differences in genomic 
contents. A master database incorporating multiple resources, 
which is a complex and time-consuming task, would alleviate  
these issues.

The frequency and rigour of updates vary greatly across differ-
ent platforms. GenBank297, for example, relies on original submitters 
to update their sequence submissions. GenBank also has less strict 
curation policies than other databases, primarily focusing on adding 
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new uploads rather than curating existing data. By contrast, the RefSeq 
database298 is regularly updated to refine annotations and integrate 
new information, adhering to specific quality standards298.

The scope of organisms present within reference databases varies 
widely. Some databases, such as RefSeq, cover a broad range of organ-
isms across all living kingdoms, including bacteria, viruses, archaea and 
eukaryotes. By contrast, other databases narrow their focus to specific 
groups of species; for example, FungiDB299 and the Joint Genome Insti-
tute ( JGI) MycoCosm300,301 specialize in fungal reference sequences, and 
the PATRIC database296 (part of BV-BRC302) is dedicated to bacterial 
and viral genomes.

The usability of databases for downloading reference genomes 
can vary. Most databases provide easy access and bulk download to 
all their stored genomes and other related data through public access 
file transfer protocol (FTP) (Supplementary Table 4). However, oth-
ers including the JGI MycoCosm300,301, Microbial Genome Database 
(MBGD)303 and Human Reference Gut Microbiome (HRGM)304 require 
a user registration step.

The continuous refinement and expansion of reference genome 
databases has a crucial role in advancing the field of metagenom-
ics and its applications in understanding microbial communities. 
Despite ongoing efforts to compile comprehensive reference sequence 

Box 1 | Environmental metagenomics applications
 

Food safety metagenomics
Metagenomic studies have profiled the microbial communities 
present across various stages of the food production and supply 
chain industries. Samples include food products, ingredients and 
environmental samples such as processing plant surfaces381, storage 
temperatures382, packaging383, irrigation water384 and even additives 
such as salt385. Leveraging metagenomic techniques can advance our 
understanding of microbial interactions within the food industry and 
enable more refined protocols for the early detection and prevention 
of food-borne pathogens386.

Soil metagenomics
Metagenomics research has illuminated microbial diversity across 
various soil types and highlighted dramatic alterations in soil 
microbiome composition over time due to industrialization and 
increasing contamination. For example, metagenomics analyses have 
revealed the complex interactions between pesticides and microbial 
genes involved in pesticide degradation, underscoring the potential 
of soil microbial communities to mitigate pesticide contaminations387. 
They have also aided in discovering beneficial microorganisms that 
promote plant growth and protect against diseases, contributing 
to more resilient agricultural systems284,388. In addition to soil-based 
studies, metagenomic research has been applied to farm animals to 
track viral pathogens and determine the relationship between the 
microbial community and host nutrition and metabolism389.

Water metagenomics
Water ecosystems including oceans45, lakes390–392 (including 
artificial393 and volcanic lakes394), rivers395 and mangroves396 have 
been extensively studied through metagenomics. Analyses of deep 
ocean sources using functional metagenomics have revealed a 
surprising diversity of metabolic strategies among microorganisms45. 
Results from metagenomic analyses of wastewater and contaminated 
groundwater provide crucial insights for developing effective 
recycling and bioremediation methods397. Metagenomic tools have 
also enhanced the assessment of microbial communities in drinking 
water for water quality monitoring398. These methods can track 
indicators of faecal pollution, detect common bacteria in polluted 
water and explore the presence of viruses.

Air metagenomics
Metagenomic studies of air samples are challenging due to low 
microbial density and the lack of standardized methodologies344. 

However, these studies revealed a positive correlation between 
certain airborne microbial genera and mortality rates in patients 
with respiratory diseases and identified positive and negative 
correlations between anthropogenic activities and airborne microbial 
communities399. Hospital air directly impacts patient health and is a 
crucial focus for metagenomic research400–402; shotgun metagenomic 
approaches have identified an abundance of opportunistic 
pathogens in hospital air264,401.

Metagenomic bioengineering
The integration of synthetic biology with functional metagenomics 
has revolutionized the discovery and exploitation of novel genes 
and biochemical structures from metagenomic profiles. This 
synergy has led to the identification of unique enzymes, and 
molecular interactions with therapeutic potential. For example, 
the interaction of N-acyl-amide synthases and G-protein-coupled 
receptors403 and the discovery of sialidases within the glycoside 
hydrolase family (GH156)404 in gastrointestinal bacteria underscore 
the potential of metagenomic bioengineering to reveal previously 
inaccessible molecular targets. The application of synthetic 
biology on marine metagenomics has enabled the reconstruction 
of complete genomes of previously unknown microorganisms, 
leading to the discovery of new genes and metabolic pathways with 
significant biotechnological potential405. Further, metagenomics 
serves as a valuable resource for mining new enzymes from 
microbial community metabolomes through functional screening 
and sequence-based approaches406. A wide range of enzymes, 
including lipases, cellulases and proteases, have been discovered, 
with metagenomic analyses promising even more discoveries in 
the future407.

Non-human microbiome
Profiling non-human species has been essential in comparative 
metagenomics. For example, a metagenomic study on the gut 
microbiomes of various non-human primate cohorts revealed an 
array of previously unidentified microorganisms and a 20% shared 
composition of species with the human microbiome408. Further, 
the use of metagenomic data from non-human species can shed 
light on how microbial communities co-evolve between and within 
species. A metagenomic study across three species of carpenter 
bees evaluating the core microbiome among these species revealed 
genomic variations409.
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databases, a large portion of metagenomic reads in a sample remain 
unexplained, failing to be assigned to any known taxa6,305,306.

Reproducibility and reusability of public metagenomic data
High-quality public metagenomic datasets can facilitate the reuse of 
previously published metagenomic data, supporting open science 
principles that promote transparency and collaboration within the 
research community307. Easy-to-use formats and complete metadata 
are essential for maximizing the usefulness of these datasets. However, 
concerns regarding data quality, metadata incompleteness and the 
heavy computational requirements of analysing raw metagenomic data 
have resulted in the under-use of available datasets by the scientific 
community308,309.

One way to reuse metagenomic data is through meta-analyses290,310. 
The aggregation of multiple studies into large meta-analyses has 
become a powerful practice for uncovering novel insights across 
diverse domains such as human health311, microbial ecology312, 
virology313 and the identification of promising drug targets314,315. Effec-
tively performing meta-analyses of existing metagenomic studies is 
subject to numerous challenges associated with data reuse, such as 
disparities in data generation, metadata incompleteness and limited 
public access to relevant raw data290.

Some recent cloud-based repositories provide integrated com-
putational resources and workflows to facilitate the analysis of large 
datasets. Platforms such as MGnify316 offer automatic analyses through 
established pipelines and provide processed results for immediate 
research use. Similarly, the NCBI Cloud Resources and the Galaxy 
Project provide cloud-based access to computational tools and data-
bases, enabling complex bioinformatic tasks without the need for 
high-end local infrastructure. The Galaxy Project further simplifies 
the process by offering a user-friendly, web-based interface that does 

not require programming skills. CyVerse317 provides integrated cyber-
infrastructure to support data storage and processing across both 
public and private clouds. Cloud-based repositories will be crucial for 
democratizing access to metagenomic data analysis, allowing more 
researchers to leverage advanced computational tools and infrastruc-
ture. However, scaling such resources to handle efficient analyses of 
thousands of samples remains a challenge. Further, the associated costs 
of these resources could be burdensome, particularly for researchers 
from low-resource universities and countries.

Limitations and optimizations
Several factors must be considered to counteract systemic biases 
and mitigate confounding factors within the study design phase of 
metagenomic analyses. This section outlines specific limitations and 
confounding factors that can be present in metagenomics analysis 
and discusses strategies for how they might be addressed.

Experimental and sampling biases
Sampling from different geographic locations or under varying 
environmental conditions can confound results due to differences 
in microbial populations318. Environmental variables such as pH, tem-
perature, moisture and nutrient availability have important roles in 
shaping microbial community structures. Further, differences in the 
way samples are collected319, the duration of sample storage320 and 
the storage medium used321 can further contribute to experimental 
biases. Failing to consider and properly curate the metadata might 
distort the relationship between microbial composition and the 
variables of interest.

Behavioural aspects can exert considerable influence on the micro-
bial composition of human or animal microbiomes. For example, 
dietary habits have been shown to shape the dynamics of the human gut 
microbiome, with disruption of the microbiome linked to chronic con-
ditions such as cardiometabolic diseases and type 2 diabetes156,322,323. 
Failure to control for behavioural factors such as diet and lifestyle could 
confound study results324. Host genetics can also affect the diversity 
and abundance of specific taxa in the host-associated microbiome325,326. 
Failure to account for genetic associations with the microbiome 
could confound the interpretation of results, obscuring the true 
reciprocal relationship between hosts and their associated micro-
biota. Metagenome-wide association studies have been used to account 
for genetic associations; for example, applying metagenome-wide 
association studies on the tongue dorsum and saliva has revealed five 
genetic loci associations with the oral microbiome327.

In longitudinal studies, samples analysed after extended storage 
periods might differ from those sequenced closer to their sampling 
dates and researchers must cautiously interpret minor but consistent 
declines in microbial richness over time320. Adherence to rigorously 
standardized protocols is important to mitigate sampling and storage 
biases and ensure consistency and reliability of the data. Strategies 
to address storage issues include collecting biological and technical 
replicates, using standardized collection devices and procedures, 
and maintaining aseptic conditions throughout storage and analysis 
to prevent contamination. Rapid freezing of samples at –80 °C is also 
recommended for optimal preservation of sample integrity. When 
freezing is not feasible, the consistent use of preservatives is crucial. 
The duration of storage must be documented and considered during 
analysis to ensure accurate interpretation of results.

Three primary sources can introduce bias in metagenomic analy-
ses during sample preparation: variable DNA extraction, contaminant 

Table 1 | Most-used publicly available repositories for 
metagenomic data

Database Total metagenomic 
samples (approximate)

Description

ENA/SRA 2,000,000 Largest public repository of 
high-throughput metagenomic data

MGnfy 343,000 Platform for harmonized assembly, 
functional and taxonomic analysis 
of diverse meta-datasets including 
sample storage and inter-study 
associations

MG-RASTa 512,000 Upon upload, the pipeline performs 
quality control, functional and 
phylogenetic analysis; real 
and simulated data can be stored 
as public or private

Tara Oceans 35,000 Database focusing on sunlit ocean 
life, consisting of seawater and 
plankton samples from 210 ocean 
stations; includes data from the 
Global Ocean Sampling expedition, 
Pacific Ocean Virome project, 
National Center for Biotechnology 
Information (NCBI) reference 
genomes and Moore Microbial 
Genome Sequencing Project

Sample number is estimated without counting amplicons. aMG-RAST is currently not actively 
supported by any organization.
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DNA introduction and inclusion of DNA from non-viable host cells 
or microorganisms. The use of different DNA extraction methods 
can result in microbial community profiles that are distinct from 
those present in the original samples. For example, some micro-
organisms with resilient cell walls are inadequately represented in 
some metagenomic datasets owing to inefficient cell lysis. Moreover, 
different extraction methods might yield varying amounts of DNA 
or exhibit biases towards certain types of microorganisms. Conse-
quently, DNA extraction represents one of the most biased steps in 
metagenomic data generation328,329. When managing DNA extrac-
tion biases, it is essential to employ validated kits or protocols while 
ensuring consistency across samples by following a standardized 
protocol. Documentation of extraction batches and inclusion of this 
information as a covariate in downstream analysis are also important 
for mitigating batch effects.

Contamination from the sampling and laboratory environments, 
equipment, reagents and even the researchers themselves can intro-
duce foreign DNA sequences into metagenomic data, complicating 
the interpretation of results330. Addressing contamination requires the 
implementation of rigorous quality control measures to identify 
potential sources of contamination and minimize its effects. Contami-
nation from external sources might originate from kits and reagents 
that commonly contain small amounts of contaminating bacteria, 
which can vary across manufacturers and facilities330,331. Additionally, 
cross-contamination can occur due to the inadvertent transfer of sam-
ple DNA, indexes (barcodes) and amplicons between samples, further 
exacerbating this issue. Although low-biomass samples are more 
susceptible to the deleterious effects of contaminants, any sample can 
be affected330–332. Implementing appropriate negative controls such as 
sampling blanks, DNA extraction blanks and no-template amplification 
is recommended to address metagenomic contamination, particularly 
for low-biomass samples. Through such measures, contaminants can 
be distinguished from endogenous (native) taxa and subsequently 
removed from the data333,334. The RIDE checklist offers valuable recom-
mendations to reduce metagenomic contamination335, emphasizing 
the importance of reporting experimental design, incorporating 

negative controls, determining the level of contamination and evaluat-
ing the influence that contaminant taxa have on the interpretation of 
metagenomic data335. Contamination can be further addressed com-
putationally via algorithmic models that are able to statistically detect 
metagenomic contamination via analysis of the read frequency333.

Some metagenomic samples contain high levels of host DNA with 
low microbial biomass. Such samples include human and animal milk, 
which can contain up to 95% host DNA32,336, host tissues, saliva and 
other bodily fluids. An abundance of host DNA presents challenges 
for distinguishing between host and microbial reads, particularly for 
novel microorganisms. Notably, the plant holobiont is susceptible to 
contamination from sources such as soil microorganisms, co-amplified 
plant organelles and human DNA. These contaminants necessitate 
rigorous sampling protocols, specialized preparatory steps and 
robust decontamination during bioinformatics analysis. Plant sample 
preparation should involve washing with sterilized solutes to remove 
potential contaminants; sequencing these reagents separately helps 
identify contaminants, preventing their interference with microbi-
ome analyses and ensuring the detection of low-abundance commu-
nity members329,337. Common sources of host contamination in plant 
metagenomics include co-extraction of chloroplast and mitochon-
drial DNA during milling and physicochemical lysis, as well as human 
DNA and relic DNA from the rhizosphere. These contaminants can 
obscure estimates of soil microbial diversity, impacting the analysis of 
root samples (rhizosphere soil) and other plant tissues338–340. Various 
strategies have been developed to address the challenges presented 
by host DNA, including selective extraction to remove host cells341,342, 
post-extraction methods that enrich for microbial genomes32,343 and 
bioinformatic approaches to filter out host-associated reads post 
sequencing. It is important to note that host depletion approaches 
might introduce bias in the sequencing of specific elements within a 
metagenome336,342.

Low microbial concentrations. Microbial concentrations can vary 
across metagenomic samples, posing a challenge for metagenomic 
research. This issue is particularly relevant in clinical metagenomics 

Table 2 | Examples of publicly available databases that store microbial reference genomes

Database Total species 
(approximately)

Contents

RefSeq 125,000 Comprehensive, non-redundant, well-annotated set of reference genomic sequences 
presented in the GenBank database, including archaea, bacteria, fungi and viruses

Ensembl377 300,000 Vertebrate genomes, plants, fungi, bacteria and protists

VEuPathDB378 500 Eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic 
species

BV-BRCa (ref. 302) 87,000 Combines the Pathosystems Resource Integration Center (PATRIC), the Influenza 
Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR), 
and includes bacterial and viral pathogens and archaeal genomes

Unified Human Gastrointestinal Genome (UHGG)379 204,000 Non-redundant genomes for human gut prokaryotes

Joint Genome Institute (JGI) 1000 fungal genomes 
project (JGI 1K)a (ref. 300)

388 Fungal and algal genomes

Human Reference Gut Microbiome (HRGM)a (ref. 304) 232,000 Non-redundant genomes for representative prokaryotic species

Microbial Genome Database (MBGD)a (ref. 380) 15,000 Incorporates all complete genome sequences of bacteria, archaea and unicellular 
eukaryotes including fungi and protozoa available at the National Center for 
Biotechnology Information (NCBI) genome FTP site

Links to access databases and file transfer protocol (FTP) servers are provided in Supplementary Table 4. aHyperlink for database does not link to an FTP server.

http://www.nature.com/nrmp
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
https://ftp.ensembl.org/pub/
https://amoebadb.org/common/downloads/Current_Release/
https://www.bv-brc.org
https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v2.0.2/
https://gold.jgi.doe.gov/organisms?Study.GOLD%20Study%20ID=Gs0000001
https://gold.jgi.doe.gov/organisms?Study.GOLD%20Study%20ID=Gs0000001
https://www.mbiomenet.org/HRGM/HRGM-Genomes.html
https://mbgd.nibb.ac.jp/
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as some body sites, such as urine342, skin31, the lungs343 and blood328, 
contain low microbial concentrations. Therefore, the volume neces-
sary for obtaining sufficient microbial biomass from non-stool samples 
should be considered344,345. For example, a study on DNA yield from 
different environmental samples (soil, water and air) revealed that air 
samples require a much larger volume of sample to yield 5 ng of DNA 
when compared with soil and water344. Alternative approaches have 
been presented to study the microbiomes of ultra-low-biomass sur-
faces and the use of negative controls should be able to detect genomic 
contamination that can result from the use of DNA-based reagents346. If 
appropriate measures (such as sample volume344, reagent use330,346 and 
the incorporation of negative controls346) are not taken, metagenomic 
analysis of low-biomass samples can lead to biased interpretations of 
study results.

The limit of detection for sequencing-based assays is an important 
consideration when using metagenomic analysis tools for clinical appli-
cations, even in samples with high bulk microbial concentrations. For 
example, Clostridioides difficile is an important human pathogen that 
has a relative abundance of less than 3% of the total microbial popula-
tions in stool of patients with active C. difficile infection, making diag-
nosis challenging347. Clinical diagnostic protocols rely on enrichment 
techniques, such as ex vivo culture or PCR, or focus on highly abundant 
expressed genes known in C. difficile infection347. Untargeted metagen-
omic sequencing would require extreme deep sequencing efforts to 
capture hard-to-detect pathogens such as C. difficile. Achieving clini-
cally meaningful interpretations of metagenomic data is essential for 
high fidelity and requires high-quality sequences that accurately rep-
resent the microbial community present in the sample. The accuracy 
from high-fidelity data ensures the ability to precisely predict antibiotic 
susceptibility. For example, unreliable data can lead to misidentifica-
tion of resistance genes compromising treatment options. Therefore, 
the purpose in refining the sequencing process must mitigate errors 
and ensure robust data to support clinical decisions that are reliable. 
Although sequencing costs are declining, the substantial increase in the 
cost of the computational analyses needed to process, store and extract 
the sequences belonging to the targeted pathogen may be overlooked. 
Therefore, it is likely that clinical applications of metagenomics will 
continue to require the use of target-enrichment protocols in order 
to have a meaningful impact in clinical practice.

Studies of the placental microbiome are a powerful example of 
how low-biomass samples can affect results from metagenomics stud-
ies. Studies have suggested that the placenta has a distinguishable 
microbiome348–350. However, the placenta has also been described 
as a nearly sterile organ with a low biomass concentration, and 
samples extracted from the basal plate can easily be influenced by 
contaminants330 from reagents330,351 or the surrounding environment, 
such as the maternal skin352, which has led to speculation regarding 
whether it possesses a unique microbiome. Ultimately, studies have 
presented evidence that what was previously interpreted as a placental 
microbiome was, instead, likely contamination353–356.

Several optimizations exist to improve the resolution of 
low-biomass microbial communities and minimize contamination 
in these samples, such as the use of sterile protocols and appropri-
ate negative controls, as outlined above. Given that reagents can be 
a source of contamination from either manufacturing or laboratory 
contamination, these should be treated with DNase as a preliminary 
step to reduce contamination of low-biomass DNA samples prior to 
DNA amplification351. In the case of the placenta, noted above, specific 
sterile procedures might include performing thorough disinfection of 

the maternal skin and using a sterile drape to cover the patient from the 
armpits to the knees before and after caesarean352.

Constraints in metagenomic assembly. Challenges in de novo 
metagenome assembly often arise because of the sheer complexity 
of microbial communities. Metagenomic samples frequently contain 
a mixture of microorganisms with different abundances and genomic 
compositions, including microorganisms that are genomically difficult 
to distinguish. Such samples might contain microbial genomes with 
vastly different coverage depth357 and a complete assembly might only 
be possible for a few high-abundance organisms.

A high-quality metagenomic assembly is dependent on several 
features of the sequencing platforms and associated protocols that 
are used, such as read length, throughput and error rate. At low cover-
age depths (typically below threefold to fivefold), many segments of 
microbial genomes are not sampled by reads owing to the random 
nature of the sequencing process. Consequently, the assembly software 
can only reconstruct a highly fragmented approximation of micro-
bial genomes, with sequence continuity disrupted in regions where 
coverage is low or absent.

Read length impacts the quality of the sequence assembly owing to 
the ambiguity caused by repetitive sequences. The presence of repeats 
hinders the reconstruction of microbial genomes as the assembler 
might not be able to determine the correct genomic placement of reads 
contained within repetitive regions. This issue can be addressed by 
using longer read lengths, which reduce the probability that reads lie 
completely within or greatly overlap repeat regions358. Paired-end reads 
are also often preferred over single-end reads as they can help bridge 
gaps in assembly (a process called scaffolding) or resolve ambiguity 
introduced by repeats359.

Metagenomic assemblers must contend with the uneven depth 
of coverage of contigs within samples (an artefact due to the varied 
abundances of organisms in a sample), a factor that complicates the 
detection of repeats and is further confounded by segments of DNA 
that are shared between different organisms (instead of just being 
repeated within a single genome)113,117. To account for the effects of 
sequencing errors and strain-level variation without exacerbating the 
impact of repeats, metagenomic assemblers tend to integrate assembly 
graphs generated with multiple k-mer sizes. Shorter k-mers are more 
able to overcome sequencing errors or strain variation, whereas longer 
k-mers are more effective at resolving repeats. Some assemblers (such 
as metaSPAdes117) aggressively attempt to ‘smooth’ out sequencing 
errors and strains in order to generate longer contiguous segments 
(contigs), whereas others (such as MEGAHIT114) are more conservative, 
resulting in more fragmented assemblies.

Long-read data can overcome some of the challenges posed 
by repeats and even strain variants, although they are associated 
with higher error rates than short-read data. Similar to short-read 
metagenomic assemblers, long-read metagenomic assemblers are 
often developed upon tools initially used to assemble single genomes. 
Hi-C technology has also been successfully adapted for metagenomics 
owing to its ability to link together genomic contigs from individual 
organisms, helping mitigate the issue of genomic fragmentation 
typically seen in metagenomic data86,360–363.

Challenges in taxonomic and functional analysis. Challenges associ-
ated with taxonomic and functional profiling from metagenomic data 
include issues regarding accurate classification amid database biases, 
as well as the complexities of predicting functions and metabolic 
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interactions within diverse microbial communities. Overcoming 
these hurdles will require interdisciplinary collaboration, advancing 
computational tools and refining analytical methods.

Taxonomic profiling is inherently a reference-based analysis, 
where the accuracy of a predicted profile depends on the quality 
and comprehensiveness of the reference database used. Incorrect 
selection of reference genomes can result in the exclusion of entire 
taxonomic kingdoms364 and incorrect taxonomic assignment15. Dif-
ferences in nomenclature between taxonomic databases can also alter 
the distribution of reported taxa. For example, the International Code 
of Nomenclature of Prokaryotes (ICNP)365 nomenclature integrates 
genomic information and observed physical characteristics of micro-
organisms, whereas the GTDB366 nomenclature is exclusively reliant 
on genome phylogeny367. Additionally, it is important to acknowledge 
that reference databases are biased towards extensively researched 
organisms368. Horizontal gene transfer can further blur taxonomic 
profiling as genes move between microbial genomes. In Supplementary 
Box 10, we provide an example of how genome database-related biases 
affect metagenomic analysis, and the transition from taxonomic to 
functional profiling to improve strain-level resolution.

Outlook
The complexity, multidisciplinary nature, and conceptual and technical 
challenges of metagenomic research have led to the need for large-scale 
metagenomics initiatives (Table 3 and Supplementary Table 3). Such 
efforts were established for setting advanced standards in data col-
lection, storage and sharing, while also assessing the impact of these 
initiatives on principles and values such as trust, confidentiality and 
privacy. Large-scale metagenomic initiatives enable the creation of 
community data resources and common standards while fostering 
technological advancements, including the development of new tools 
and shared data and software resources. Consequently, large-scale 
collaborative metagenomic initiatives have been critical for enhanc-
ing our understanding of global biological diversity of environments 
and human health. Examples of such initiatives include those focused 
on unmanaged landscapes and aquatic environments, such as Tara 

Oceans4 and the Global Ocean Sampling Expedition369, which explored 
the biological diversity in seawater and sediments. In parallel, the 
TerraGenome370 project explored microbial diversity in soil. Other 
initiatives have focused on characterizing managed ecosystems and 
the microbial communities within urban environments, including the 
Earth Microbiome Project7 and the MetaSUB initiative371. Another large 
area of research is host-associated habitats, where initiatives such as 
the Human Microbiome Project372, the BeeBiome Consortium373 focus 
on examining microbial interactions with hosts including the influ-
ence on host health and their interactions within ecosystems. These 
projects were characterized by centralized management and meticu-
lous design to ensure the production of high-quality data and rigorous 
downstream data analysis.

We expect that global metagenomic initiatives will continue to 
support the establishment of broad foundational principles and inno-
vative technologies and methods, given that such advances are more 
effectively implemented within the context of multi-institutional and 
highly replicated studies than in traditional single-investigator pro-
jects. Additionally, such large projects provide unique opportunities 
for public outreach and educational development within the metagen-
omics field. We note, however, that implementing and executing inter-
national and multidisciplinary metagenomics projects demands a 
high level of collaboration and coordination that extends beyond the 
possibilities of what individual research groups can typically man-
age. In particular, owing to their international character reach, broad 
scope and the involvement of numerous investigators, these initiatives 
necessitate carefully developed management plans, along with funding 
that is specifically allocated to enhance communication and promote 
effective collaboration. Despite these challenges, international and 
multidisciplinary projects offer an excellent opportunity to train a new 
generation of young scientists, equipping them with skills necessary 
for collaborative and large-scale science (Supplementary Box 11).

Optimal insights are often achieved through concerted 
multi-investigator and multidisciplinary efforts by integrating vari-
ous methods, such as sequencing, functional-expression analysis, 
metabolomics analysis and deep phylogenetic analysis. Consequently, 

Table 3 | Details of publicly available initiatives dedicated to the standardization of metagenomic data

Initiative Total metagenomic samples 
(approximate)

Description

HumanMetagenomeDB 1.0 69,000 Standardizes human metagenomic data; sequencing data are not available on 
the website but a script is provided for downloads

TerrestrialMetagenomeDB 2.0 20,000 Focused on the standardization of metadata for terrestrial metagenomes; 
similar to HumanMetagenomeDB 1.0, developers offer a download script

PlanetMicrobe 2,000 Specializes in the standardization of marine or non-marine aquatic samples

MetaSUB Consortium 20,000 Standardization of collection, storage, transport, processing and analysis of 
surface, air, water and sewage samples from urban and rural areas

Serratus Database 5,700,000 Access to raw virome sequencing data including RefSeq vertebrate viruses, 
GenBank, Coronaviridae and full-length RNA-dependent RNA polymerase 
sequences, standardizing the processing of contigs including assembly and 
annotation

National Microbiome Data Consortium (NMDC) 2,900 Integrates the standards of multiple organizations to evaluate quality and 
access for metagenomic data, in addition to other multi-omics data such as 
proteomics, metatranscriptomics and metabolomics

Critical Assessment of Metagenome 
Interpretation (CAMI)

526 Comprehensive evaluation of metagenomic tools, offering reliable 
performance data to guide accurate interpretation and method improvement

http://www.nature.com/nrmp
https://web.app.ufz.de/hmgdb/
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https://www.planetmicrobe.org/
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https://microbiomedata.org/
https://data.cami-challenge.org/
https://data.cami-challenge.org/
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Glossary

Alpha diversity indices
Indices that measure species diversity 
within a single, local microbial 
community or sample and consider 
both the number of different species 
(richness) and evenness of their 
distribution, as assessed through 
indices such as the Shannon index 
or Simpson’s index.

Amplicon sequencing
A procedure in which scientists target, 
amplify and sequence marker genes, 
typically the 16S and/or 18S ribosomal 
RNA genes.

Antibiotic resistance genes
Specific genetic sequences within 
microbial communities that encode 
factors conferring resistance to 
antibiotics; these genes are often 
located on plasmids or transposons 
and can be transferred from cell to cell 
by conjugation, transformation or 
transduction.

Antimicrobial resistance
The developed capability of bacteria 
and fungi to resist drugs designed to 
kill them.

Contigs
Contiguous sequences of DNA that 
are assembled from overlapping 
sequence reads.

de Bruijn graph
A data structure used in genomics 
to represent overlaps between 
sequences, where nodes represent 
k-mers (substrings of length k) and 
directed edges represent overlaps 
of k – 1 bases between consecutive 
k-mers; the sequence of the genome 
being assembled can be ‘read’ by 
traversing the graph and concatenating 
the sequence of the k-mers 
encountered.

Environmental DNA
Genetic material obtained directly 
from environmental samples such as 
soil, water and air.

Environmental metagenomics
The study of the microbial community 
present in a natural ecosystem such as 
water, soil or air.

Functional metagenomics
The study of the genomic roles 
and interactions within a microbial 
community; this includes tasks 
such as gene prediction, functional 
annotation and functional profiling 
to characterize its genomic 
composition and metabolic and 
enzymatic activities.

Functional potential
The presence of genomic elements 
(such as genes) from which the 
physiological processes of a 
microorganism can be inferred, 
but not verified without direct 
experimental evidence.

Functional profiles
Characterizations of the potential 
biological functions and metabolic 
pathways within a microbial community.

High-performance computing 
clusters
A network of computers that work in 
tandem to efficiently tackle intensive 
computational tasks.

Horizontal gene transfer
The exchange of genetic material 
between organisms that are not in 
a parent–offspring relationship.

k-mers
Substrings, of length k, derived from 
a longer DNA or RNA sequence, 
used in bioinformatics for tasks such 
as assembling genomes, analysing 
sequence composition and identifying 
sequence similarities.

Marker genes
Evolutionarily conserved genes with 
one or more variable regions that 
are used as an evolutionary clock 
to delineate phylogenetic lineages and 
classify microorganisms into taxa.

Metabolomics
Experimental and computational 
approaches used to characterize the 
metabolite profiles found in microbial 
communities.

Metagenome-assembled 
genomes
(MAGs). Genomes or collections of 
genome fragments originating from 
a single organism extracted from a 
microbial community.

Metagenome-wide 
association studies
Statistical metagenome-wide studies 
that involve the identification and 
association of genetic loci and genomic 
information with disease in relation to 
the host and its environment.

Metagenomic assembly
The process of reconstructing individual 
genomes or genome fragments 
(contigs) from the sampled DNA 
of a microbial community.

Metagenomic binning
The grouping of contigs into discrete 
bins or collections that represent 
individual organisms or taxa.

Metagenomic profile
A comprehensive overview of collective 
microbial genetic material from a 
sample, providing insights into species 
composition, functional potential and 
relative abundance.

Microbiome
A microbial community sampled from 
an environment where different species 
of fungi, bacteria, archaea and viruses 
can be present; the definition includes 
microorganisms and their functions and 
interactions.

One Health approach
A metagenomic method that connects 
metagenomic information of patients, 
animals and the environment to 
encompass and characterize the 
interaction of microbial communities 
to aid in the clinical diagnosis and 
treatment of humans.

Open reading frames
(ORFs). Continuous sequences 
of codons in a genomic region, 
starting with a start codon and 
ending with a stop codon, that has 
the potential to be translated into a 
functional protein.

Resistome
The landscape of genes present 
in the microbiome that are resistant to 
antibiotic treatment; antibiotic-resistant 
genes can be acquired through 
horizontal gene transfers, which is an 
evolutionary event where genes can be 
moved and adopted among a microbial 
community.

Sequencing depth
The number of times that a particular 
DNA or RNA nucleotide is read during 
the sequencing process. The average 
depth of sequencing coverage can be 
defined as LN/G, where L is the read 
length, N is the number of reads and  
G is the haploid genome length.

Shotgun metagenomics
An approach that enables the analysis 
of an entire microbial community 
without targeting specific species by 
randomly fragmenting the genomic 
material present in a metagenomic 
sample and sequencing it.

Taxonomic profile
A list describing the taxa in a microbial 
community along with their relative 
abundances.

Viral quasispecies
A group of closely related viral variants 
resulting from high mutation rates 
during viral replication forming a 
dynamic population of genetically 
diverse but related sequences, often 
referred to as a ‘cloud’ of mutants.

Virulence factors
The molecules that assist microbial 
pathogens to colonize a host at 
the cellular level.
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such initiatives will benefit from the broad expertise of professionals 
from numerous fields, including geneticists, microbiologists, physi-
cians, bioinformaticians and computational scientists. By integrating 
diverse expertise and perspectives, researchers can tackle complex 
challenges more effectively to drive innovation in metagenomic 
research. Furthermore, leveraging emerging technologies such as 
machine learning holds promise for facilitating both data analysis 
and interpretation. These tools offer opportunities to extract valu-
able insights from vast amounts of microbiome data, accelerating 
discoveries and enabling development of personalized approaches to 
healthcare. Promoting open science principles and data sharing, such 
as through the establishment of accessible repositories and platforms 
for sharing data, methodologies and findings, can maximize the impact 
of collaborative efforts, fostering transparency, reproducibility and 
community engagement.

Building on data values and ethical principles, large-scale 
metagenomic projects also increase outreach by inviting scientists 
from outside the specific consortium to participate in data exploration 
and analysis. Notably, the Critical Assessment of Massive Data Analysis 
(CAMDA) challenges and conferences have fostered community-driven 
data analysis for biological Big Data for two decades374. Since 2016, 
CAMDA has partnered with the International MetaSUB Consortium, 
featuring extensive datasets from large-scale sampling of mass-transit 
systems and other public areas across the globe generated during City 
Sampling Day actions. Thus, the CAMDA community has had the oppor-
tunity to explore MetaSUB data in the context of microbiome-based 
sample origin prediction or resistome characterization/antimicrobial 
resistance prediction, resulting in more than 20 publications to date. 
Currently, CAMDA participants are exploring new metagenomics 
data analysis-related areas including gut microbiome-based health 
assessment.

A critical component of large-scale metagenomic research 
is the refinement of bioinformatic tools, which require rigorous 
benchmarking374. One practical approach for benchmarking metagen-
omics tools is through community-organized challenge-based assess-
ments. A notable example is Critical Assessment of Metagenome 
Interpretation (CAMI)375, offering challenges dedicated to benchmark-
ing metagenomic tools designed for various tasks such as genome 
assembly, taxonomic profiling and binning. These challenges delve into 
analysing the accuracy, run time and memory usage of bioinformatics 
tools, providing invaluable insights into their performance. The results 
obtained from such challenges are instrumental in identifying current 
limitations of existing computational methods, thereby paving the way 
for advancements in computational metagenomics.

The range of applications for metagenomics is continually expand-
ing, with profound implications for public health, environmental man-
agement and biodiversity conservation. For example, metagenomics 
applications have significant potential in the clinical setting, and their 
implementation is revolutionizing infectious disease diagnostics and 
pathogen surveillance376. That is, the increased use of metagenom-
ics in a patient-care context will allow clinical microbiology to move 
past simple pathogen identification towards a holistic diagnosis that 
includes a systematic breakdown of antibiotic resistance, virulence fac-
tors, host metabolic determinants and ecological context. Moreover, 
sequencing and sequence databases can now be leveraged to learn 
more about each pathogen diagnosis in the context of the patient, the 
hospital and the broader community. This ability will allow us to bet-
ter understand the specific context of each infection, thus facilitating 
personalized medicine while also allowing epidemiologists to track 

infection trends in real time. Lastly, metagenomics can broadly enhance 
our understanding of microbial contributions to biodiversity, help us 
preserve microbial diversity, and assist in identifying rare and unique 
microbial taxa that will be important for both bioprospecting and the 
development of new sustainable biotechnological applications to drive 
future scientific innovations.

Published online: xx xx xxxx
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