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Summary

What evolutionary forces shape genes that contribute to the
risk of human disease? Do similar selective pressures act on

alleles that underlie simple versus complex disorders [1–3]?
Answers to these questions will shed light onto the origin of

human disorders (e.g., [4]) and help to predict the population

frequencies of alleles that contribute to disease risk, with
important implications for the efficient design of mapping

studies [5–7]. As a first step toward addressing these ques-
tions, we created a hand-curated version of the Mendelian

Inheritance in Man database (OMIM). We then examined se-
lective pressures on Mendelian-disease genes, genes that

contribute to complex-disease risk, and genes known to be
essential in mouse by analyzing patterns of human poly-

morphism and of divergence between human and rhesus
macaque. We found that Mendelian-disease genes appear

to be under widespread purifying selection, especially
when the disease mutations are dominant (rather than reces-

sive). In contrast, the class of genes that influence complex-
disease risk shows little signs of evolutionary conservation,

possibly because this category includes targets of both
purifying and positive selection.

Results and Discussion

Diseases are thought to persist in human populations primarily
because of a balance between mutation, genetic drift, and
natural selection, with alleles that contribute to disease intro-
duced by mutation, governed in part by random genetic drift,
but eventually eliminated from the population by purifying
selection [5, 7, 8]. For simple, highly penetrant disorders,
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purifying selection might be quite strong. For complex dis-
eases, however, individual alleles might contribute little to
overall risk and be only weakly deleterious [9]. Similarly, alleles
that cause exclusively late-onset Mendelian disorders might
not impose an evolutionary-fitness cost and thus could be
under little or no selection. Disease susceptibility could also
arise, not from a balance between mutation and purifying se-
lection but as a consequence of adaptation. For example,
there is evidence of heterozygote advantage (e.g., at b-globin)
and of the fixation of compensatory alleles [10] in genes that
cause Mendelian disorders, as well as indications that environ-
mental shifts have led to changes in selection pressures over
time. In particular, in a subset of genes associated with com-
plex-disease risk, the susceptibility allele is ancestral, and
population-genetic analyses suggest that the derived, protec-
tive allele is selectively advantageous ([3] and references
therein). Finally, alleles could be subject to balancing selection
if they increase the risk of one disease but decrease the risk
of another or if there are important interactions between
genotype and environment. These considerations raise the
possibility that a fraction of loci that underlie contemporary
human diseases have been the target of positive, as well as
of purifying, selection.

The main approach to evaluating these hypotheses has
been contrasting evolutionary rates in genes associated with
Mendelian-disease phenotypes with those in all other genes
by use of Dn/Ds, the ratio of nonsynonymous to synonymous
substitutions. Assuming that synonymous substitutions are
mostly neutral, Dn/Ds reflects the proportion of amino acid
changes in a gene that reach fixation and therefore are not
strongly deleterious. Thus, (1 2 Dn/Ds) is often thought of as
an estimate of the evolutionary constraint acting on a gene (an
underestimate if adaptations are frequent), which reflects the
extent of purifying selection and, to a lesser extent, its strength.
To date, results of comparisons between disease and ‘‘non-
disease’’ genes have been conflicting: Two studies found signif-
icantly lower Dn/Ds values in genes that cause Mendelian dis-
ease than in other genes [8, 11], two found significantly higher
values [12, 13], and one found no significant difference [14].
These divergent answers might be due to the reliance of most
studies on the OMIM database. Although OMIM is the most ex-
haustive publicly available resource, its phenotypic information
is sometimes outdated and is not entered in a standard format,
rendering automated searches unreliable (see Supplemental
Data, available online). A second limitation, for a subset of
papers, might be the use of comparisons between human and
rodent, because it is hard to estimate Dn/Ds reliably for such
distantly related species. In addition, many genes classified as
nondisease genes might nevertheless be under strong and
widespread purifying selection, reducing the power to detect
a difference between categories [8].

To overcome these limitations, we created a hand-curated
version of OMIM (hereafter ‘‘hOMIM’’), including only highly
penetrant diseases caused by a mutation in an autosomal or
X-linked gene (see Experimental Procedures). Because the
vast majority of mutations currently known to underlie simple
diseases are in exons, we focused on the coding regions,
assessing levels of constraint by estimating Dn/Ds between
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human and rhesus macaque. This Old World monkey last had
a common ancestor with humans over 25 Mya [15], which is
long enough for the comparison to be informative but short
enough for the estimates of Dn/Ds to be reliable and for the
two species to be more likely to share similar pathophysiol-
ogies. Finally, we used a classification of essential genes in
mice to identify a subset of genes that are not currently asso-
ciated with human disease but that are nonetheless likely to be
conserved in mammals [16].

Analysis of hOMIM Genes
We first compared rates of protein evolution among genes in
hOMIM (see Experimental Procedures), with the prediction
that, all else being equal, genes in which mutations cause
solely late-onset disorders should be less conserved than
those in which mutations cause earlier-onset disorders. We
further expected that if weak purifying selection is common
(i.e., if the selection coefficients acting on homozygotes are
often in the range 28 < Nes < 0, where Ne is the effective pop-
ulation size) [7, 11], genes in which mutations cause recessive
disorders should have higher Dn/Ds values than do those in
which mutations lead to dominant disorders (e.g., Figure 8 in
[17]). We therefore tabulated from OMIM entries information
about the age at onset of the disorder and the mode of inher-
itance (see Experimental Procedures), then we assessed
whether this information predicts the evolution of genes
underlying simple disorders. Because the entire coding region
is used to test these predictions, a key assumption is that the
mode of inheritance and age at onset are predictive of these
attributes for other mutations in the same gene.

As expected, most Mendelian disorders with a known gene-
tic basis are early-onset disorders, with only a small set man-
ifesting themselves after age 40 (Figure 1). Overall, 45.3% of
the disease phenotypes are recessive; the data further sug-
gest that early-onset disorders are more likely to be recessive
and that late-onset disorders are more likely to be dominant,
but these findings could also reflect ascertainment bias (e.g.,
the greater difficulty in mapping loci underlying early-onset,
dominant disorders).

Figure 1. Mode of Inheritance and Age at Onset of Disease Phenotypes

in Our Hand-Curated Version of the OMIM Database

Categories are autosomal dominant (AD), autosomal recessive (AR),

both (ADAR), and X-linked (X). We also classified genes by the age at

onset of the disorder (see Supplemental Experimental Procedures for

details).

Data are in Table S4.

Considering divergence between human and rhesus ma-
caque (hereafter, ‘‘human-rhesus macaque divergence’’),
we found no evidence that genes in which mutations cause
earlier-onset disorders have lower Dn/Ds values than those
in which mutations cause later-onset disorders (Table S1).
This could simply reflect a lack of power, given that we
have data on very few genes (14) that cause exclusively
late-onset disorders; alternatively, mutations in the genes
might have pleiotropic effects, or the age at onset might
have been earlier in the past [18].

In contrast, we found a highly significant effect of the
mode of inheritance on conservation levels of the protein
(p << 1023; see Supplemental Data): Dn/Ds values tend to
be higher in genes with recessive disease mutations (me-
dian = 0.184, n = 452) than in those with dominant disease

mutations (median = 0.084, n = 294), and they tend to be
intermediate in X-linked genes (median = 0.138, n = 64)
(Figure 2; see also [19]). This association could reflect a con-
founding factor. In particular, the mode of inheritance is known
to vary markedly among GO functional categories (e.g., Table
S2; see Experimental Procedures for details); however, it re-
mains a highly significant predictor of Dn/Ds values after these
and other possible covariates are controlled for (Table S3).

We then combined human polymorphism data and data on
human-rhesus macaque divergence to estimate the fraction
of amino acid sites that are not strongly deleterious, u. We
also estimated the selection coefficient acting on homozygote
mutations in disease genes, g (assuming a fixed selective ef-
fect); this value can be thought of as a summary of the pooled
polymorphism and divergence data for genes in a given cate-
gory (see Experimental Procedures). As shown in Figure 3,
there appears to be more-widespread and stronger purifying
selection on genes associated with dominant rather than
with recessive disease phenotypes.

Comparison of Genes Associated with Simple
versus Complex Diseases

Next, we compared conservation levels of genes in hOMIM to
those of genes in which mutations are associated with cancer
or contribute to other complex-disease susceptibility, genes
for which knockouts are inviable or cause sterility in mice
[16] (hereafter, ‘‘essential genes’’), and ‘‘other’’ genes not
known to influence disease risk (see Experimental Proce-
dures). Comparisons of Dn/Ds values suggest that, as a class,
proteins that are essential in mouse and those in which muta-
tions are associated with cancer evolve the most slowly (Fig-
ure 4; median Genome Dn/Ds = 0.077 and 0.061, respectively).
In turn, the coding regions of hOMIM genes tend to be slightly,
but significantly, more slowly evolving than are genes not
associated with disease (median Genome Dn/Ds = 0.133
versus 0.139, respectively; see Table S1 for p values).

The polymorphism data further suggest widespread purify-
ing selection on amino acid sites in these gene categories
(Figure 4). Notably, in all three sets of genes, nonsynonymous
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variants occur at significantly lower frequencies than do vari-
ants at synonymous sites (see Figure S2). A similar conclusion
emerges when we combined polymorphism and divergence
data to estimate selection parameters u and g (Figure 3).
Thus, our findings lend further support to the hypothesis that
proteins that underlie Mendelian-disease or are associated
with human cancers evolve primarily under purifying selection.

Although a model of mutation-selection balance was also
proposed for genes that influence complex-disease risk [7],
this group does not show evidence of conservation greater
than that of non-disease-associated genes. Instead, it tends
to have a higher Dn/Ds ratio (median Genome Dn/Ds = 0.203)
than do hOMIM genes or ‘‘other’’ genes, consistent with one
of the earlier reports regarding comparisons between human
and mouse [14]. This difference between genes associated
with complex versus Mendelian diseases is still significant
after correction for GO categories and after exclusion of genes
associated with immune response (median Genome Dn/Ds

after exclusion = 0.172; see Experimental procedures and
Figure S1).

In addition, in genes associated with complex-disease sus-
ceptibility, the frequencies of amino acid alleles tend to be
higher than in other categories of genes, including genes not
associated with disease (Figure 4). Additionally, the amino
acid allele frequencies do not differ significantly from those
of silent variants (Figure 2). These findings do not appear to
be explained solely by the ascertainment bias of complex-
disease-gene discovery or by the smaller number of genes in
this category (see Supplemental Data). Together, they suggest
that genes associated with complex-disease susceptibility
tend to be under less-pervasive purifying selection than are
other classes of essential or disease genes. In further support
of this conclusion, the estimate of u is higher for genes asso-
ciated with complex-disease risk than for Mendelian or even
for non-disease-associated genes, as is the estimate of the
selection coefficient, g (Figure 3).

Why would this be the case? Two (non-mutually exclusive)
explanations are: (1) A substantial fraction of ‘‘other genes,’’
although not known to be essential in mouse or to be

Figure 2. Cumulative Distributions of Dn/Ds and

Tajima’s D as a Function of the Mode of Inheri-

tance

The value of the statistic is given on the x axis. AR

refers to autosomal recessive and AD to autoso-

mal dominant. In parentheses are the numbers of

genes in each category. Dn/Ds plots are shown

for two sets of human-rhesus macaque align-

ments. The distributions of Dn/Ds for AD and AR

categories are significantly different from one an-

other, but the distributions of Tajima’s D values

are not (see Table S1). Tajima’s D was calculated

for amino acid variants with the use of a European

population sample; when an African-American

sample is used instead, the order of AR and AD

is reversed, but again, the distributions are not

significantly different (not shown).

associated with human disease, are in
fact under widespread and strong puri-
fying selection. In contrast, alleles that
contribute exclusively to complex dis-
eases tend to explain only a small pro-
portion of disease risk [9] and to have
late-onset effects, so they might have

few fitness consequences. If so, changes in genes associated
with complex-disease risk could be under very weak, if any,
purifying selection. (2) Genes that influence complex-disease
susceptibility include loci under widespread purifying selec-
tion but are also enriched for targets of positive selection,
thus appearing to be less conserved when considered as
a class. For example, if we consider all candidate loci evalu-
ated for evidence of selection by Sabeti et al. [20], there ap-
pears to be an enrichment for targets of selection among
genes associated with complex-disease risk relative to Men-
delian-disease genes: 8.3% (six out of 72) of genes fall in the
empirical 5% tail of the distribution of at least one statistic in
at least one population, whereas only 1.1% (11 out of 1004)
of genes in hOMIM do so (p = 5 3 1024, by a one-tailed Fisher’s
exact test). Complex-disease mapping is in its infancy, so it is
too early to reliably distinguish between hypotheses–espe-
cially given that the genes that have been found to date are
probably an unrepresentative subset (see Experimental Pro-
cedures). Nonetheless, existing data raise the possibility
that, whereas simple disorders are generally well-described
by models of purifying selection, complex-disease suscepti-
bility is tied, at least in part, to evolutionary adaptations.

Experimental Procedures

Hand-Curating OMIM

Our goal was to create a list of all genes that contribute to human diseases

with a simple genetic basis. To do so, we used the Online Mendelian Inher-

itance in Man database (OMIM; http://www.ncbi.nlm.nih.gov/entrez/query.

fcgi?db=OMIM/). OMIM is the most exhaustive, publicly available repository

of information about human-disease phenotypes. However, it suffers from

a number of limitations: for example, entries do not have a standard format,

and outdated information is supplemented with new data rather than re-

placed. Moreover, although most phenotypic entries are Mendelian or at

least have a simple genetic basis, a nonnegligible fraction are clearly com-

plex in etiology (e.g., autism). These features make automated queries

highly unreliable.

We therefore decided to create a hand-curated summary of the OMIM da-

tabase (hereafter referred to as ‘‘hOMIM’’), consisting of a list of pairs (gene,

phenotype) together with phenotypic information about the mode of inher-

itance and age at onset. A description of how the list was constructed is

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM/
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Figure 3. Selection Parameters Estimated from Polymorphism and Divergence Data

In the left panel are estimates of two parameters, u and g, obtained from pooled polymorphism and divergence data in different categories of genes, in-

cluding those in hOMIM, those associated with complex-disease susceptibility (‘‘complex’’), those associated with cancer (‘‘cancer’’), those for which

knockouts are inviable or cause sterility in mice (‘‘essential’’), and those in none of the above categories (‘‘other’’). Genes in hOMIM are further broken

down into two categories, depending on whether mutations cause dominant (‘‘AD’’) or recessive (‘‘AR’’) disease phenotypes. Shown are the mean and

the standard deviation of the posterior-distribution estimate for each parameter. The parameter u = log(qR/qS) can be thought of as the fraction of amino

acid mutations that contribute to polymorphism, i.e., that are neutral or nearly neutral (qR is the effective mutation rate at replacement sites, and qS is

that at synonymous sites), and g is the selection coefficient acting on amino acid mutations in a category of genes. The estimates are obtained by the as-

sumption of one selection coefficient g for all mutations within a category; given this unrealistic assumption, the value of the g estimate is less informative

than is the ordering for the different categories (see Supplemental Data for details). In the right panel are summaries of the pooled polymorphism and

divergence data (i.e., McDonald-Kreitman tables) for genes in each category (see Experimental Procedures for details). We note that g can also be thought

of not as a parameter estimate but as a summary of the table for each category, thereby capturing information similar to that captured by the odds ratio.
provided in the Supplemental Experimental Procedures, and the list is

available in Table S4. This process yielded a list of 1685 unique pairs

(gene, phenotype), corresponding to 1039 distinct genes, for examination.

To run our analyses, we excluded phenotypes that were clearly complex

or caused by triplet-repeat expansions; 1613 pairs remained.

In our analysis of Mendelian-disease genes, we also tried using a smaller

list of OMIM pairs (gene, phenotype), compiled independently by Jimenez-

Sanchez et al. (2001) [21] with the use of slightly different criteria; the

qualitative conclusions were the same (results not shown).

List of Genes that Contribute to Complex-Disease Susceptibility

To create a list of genes that influence complex-disease susceptibility, we

relied on two sources. First, we used compilations in three surveys of asso-

ciation studies [2, 22, 23]. To create a more stringent set of genes, we used

only genes for which the associations had been replicated at least once or

for which a meta-analysis supported the original association (i.e., bolded

entries in Table 2 of [22], as well as entries in Table 2 of [23] and Table 1

of [2]). Second, we tabulated results from genome-wide association studies

of complex-disease susceptibility that were published by June 7, 2007 (see

Table S5 for references). Of the associations reported in these studies,

we retained only cases in which the association had been replicated and

a specific candidate gene had been identified by the investigators. From

these sources, we found 72 genes that are associated with complex dis-

eases but are not known to cause Mendelian diseases (i.e., not included

on our hand-curated version of OMIM), of which 46 met our more stringent

criteria. In our analysis, we considered genes that contribute both to

complex-disease risk and to Mendelian diseases as Mendelian-disease

genes.
In addition, we analyzed a set of 363 genes in which somatic or germline

mutations are associated with cancer susceptibility (the complete working

list is available from http://www.sanger.ac.uk/genetics/CGP/Census/) as

of Feb. 13 2007, as well as a set of genes for which knockouts were inviable

or caused sterility in mice [16] (downloaded from http://www.umich.

edu/wzhanglab/download/Liao_MBE2006_update/essential.txt). When com-

paring classes of genes, we classified genes that belong to multiple cate-

gories in the following order of priority: hOMIM, complex, cancer, essential,

other; such that genes are only in the ‘‘other’’ category if they are not asso-

ciated with any type of disease and not known to be essential in mouse. We

also ran the Dn/Ds analyses, excluding the genes that belonged to multiple

categories, and the results were unchanged (not shown).

GO Categories and Patho-Physiologies

In order to examine the functional annotation of genes, we used the Gene

Ontology (GO) database (http://www.geneontology.org/). Specifically, we

retrieved the (level 2) GO assignment of each gene by examining the specific

GO terms with which each gene is associated, as determined by the Euro-

pean Bioinformatics Institute (http://www.ebi.ac.uk/). We then located

each of these terms on the overall directed acyclic graph (DAG) structure

of GO and traced them back to their ancestral terms at this level of annota-

tion. Both the EBI annotations of the genes and the entire DAG structure

were downloaded from the database site on September 21, 2006. In one

analysis, we excluded genes associated with immune response by remov-

ing all genes that are associated with the immune-system-process ontology

(GO:0002376) or with any of its subontologies. We also used the pathophys-

iology classifications of Huang et al. [13]. The GO categories for each gene

are available in Table S6.

http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.umich.edu/~zhanglab/download/Liao_MBE2006_update/essential.txt
http://www.umich.edu/~zhanglab/download/Liao_MBE2006_update/essential.txt
http://www.geneontology.org/
http://www.ebi.ac.uk/
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Human Coding Sequences

The Refseq collection of human transcripts was downloaded from ftp://ftp.

ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot on March 18, 2006. For each

gene on our list, we examined all records corresponding to it and selected

the longest coding sequence for the gene. In the case of IGKC, Ig kappa

chain C region, which does not have a record in refseq, we used the coding

sequence in GenBank record BC073791.1.

Estimates of Human-Rhesus Macaque Dn/Ds

For divergence data, we used human-rhesus macaque alignments taken

from 10,376 1:1:1 orthologous alignments between human, chimp, and rhe-

sus macaque [24], kindly provided by Adam Seipel at Cornell University. We

estimated Dn/Ds for each gene by using the PAML package [25] with the de-

fault parameters for nuclear DNA. We excluded cases in which synonymous

divergence was 0 and set Dn/Ds to 0 when nonsynonymous divergence was

0. This set of estimates is referred to throughout as the ‘‘Genome Dn/Ds’’

values. To map the genes to those on our compilations of disease associa-

tions, we used all known gene symbols and aliases from the kgAlias table at

the UCSC Genome Database. Genes from the Cornell dataset for which we

could not find a symbol were not included in the analysis.

These data only provided alignments for 50% of genes in hOMIM. To in-

crease the number of Mendelian- and complex-disease genes for which

we could estimate Dn/Ds, we also built our own alignments. For this

Figure 4. Conservation of Genes in Different Disease Categories

Cumulative distributions of Dn/Ds and Tajima’s D for genes in hOMIM,

those associated with complex-disease susceptibility (‘‘complex’’),

those in which mutations are associated with cancer (‘‘cancer’’), those

for which knockouts are inviable or cause sterility in mice (‘‘essential’’),

and those in none of the above categories (‘‘other’’). For other details,

see the legend of Figure 2. The distributions of Dn/Ds are significantly dif-

ferent for all pairwise comparisons (at the 5% level) except those of

‘‘essential’’ genes versus ‘‘cancer’’ genes and those of ‘‘other’’ genes

versus ‘‘complex’’ disease, in which significance is marginal (see Table

S1). The distributions of Tajima’s D values in the larger Applera dataset

(shown here for the European samples) are significantly different (at the

5% level) in genes associated with complex diseases versus either

hOMIM genes or generic genes (see Table S1); all other pairwise com-

parisons are also significant, other than those of ‘‘cancer’’ genes versus

‘‘hOMIM’’ genes, ‘‘hOMIM’’ genes versus ‘‘essential’’ genes, and ‘‘other’’

genes versus ‘‘essential’’ genes.

purpose, unassembled sequence of the rhesus macaque genome was

downloaded on Feb. 17, 2006 from http://www.hgsc.bcm.tmc.edu/

projects/rmacaque/; for details on how orthology was determined, see

the Supplemental Data. Each human gene sequence was aligned to its

rhesus macaque ortholog with the use of the GAP program [26]. Using

the translation of the coding sequence of the human gene, we retained

only positions corresponding to whole codons. If an insertion in the rhe-

sus macaque sequence occurred within codons, the codons affected by

the insertion were removed, as were codons in which the rhesus ma-

caque sequence contained a stop codon. We used the PAML package

[25] to estimate the Dn/Ds ratio for the resultant pairs of aligned ortholo-

gous sequences. Only genes for which the rhesus macaque sequence

covered at least 50% of the human sequence were included in the anal-

yses. The Dn/Ds estimates for all genes analyzed are available in Tables

S7–S10.

Human Polymorphism Data

We analyzed polymorphism data from two resequencing efforts, the

NIEHS SNPs (http://egp.gs.washington.edu/) and the SeattleSNPs

(http://pga.gs.washington.edu/) databases, on August 21, 2006. We

analyzed European samples and African (or African-American) samples

separately. Sub-Saharan African populations do not appear to have ex-

perienced a recent bottleneck, in contrast to European populations (e.g.,

[27]), so their allele frequencies might be closer to mutation-selection

balance. On the other hand, much of the anecdotal evidence for selec-

tion on genes associated with complex-disease risk is in regard to Euro-

peans (e.g., [28]).

In addition, we analyzed the resequencing polymorphism data in the

Applera dataset [11], a genome-wide resequencing effort, considering

European-American or African-American samples separately. We also

ran the same analyses pooling all population samples, and the qualitative

conclusions were unchanged (results not shown). The Applera project se-

quenced a chimpanzee to infer the ancestral state, and we used their infer-

ence to construct a derived frequency spectrum (see below). We mapped

the Applera dataset genes to genes in our lists of Mendelian- and com-

plex-disease genes as described for the Rhesus Macaque Genome

Sequencing and Analysis Consortium alignments.

We used the set of nonsynonymous polymorphisms to calculate Tajima’s

D [29], a summary of the (folded) allele-frequency spectrum known to be

sensitive to the effects of purifying selection [29]. To do so, we excluded

SNPs with small sample sizes (< 10 individuals) and more than 10% missing

data, as well as genes with 0 nonsynonymous polymorphisms; see the Sup-

plemental Data for the formula used. The Tajima’s D values are available in

Tables S9 and S10. We also calculated the frequency spectrum for each

gene by creating 20 bins of allele frequencies (< 5%, 5%–10%, etc.) and

tabulating the number of alleles in each bin. We then created an ‘‘average

frequency spectrum’’ for each category (e.g., ‘‘autosomal dominant’’) by

summing the number in each bin over all genes in that category (effectively

concatenating all genes in a given category).

Statistical Analyses

To assess whether the distributions of a statistic (Dn/Ds or Tajima’s D) dif-

fered between two groups of genes (e.g., those in which mutations cause

ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot
ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot
www.ncbi.nlm.nih.gov
http://www.hgsc.bcm.tmc.edu/projects/rmacaque/
http://www.hgsc.bcm.tmc.edu/projects/rmacaque/
http://egp.gs.washington.edu/
http://pga.gs.washington.edu/
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autosomal-dominant versus autosomal-recessive disorders), we used

a Kolmogorov-Smirnov test. Details are provided in the Supplemental

Data. To test whether Dn/Ds or Tajima’s D predicted the odds of belonging

to a given category, we performed logistic regressions by using the R func-

tion glm with the binomial parameter (http://www.r-project.org). A p value

was calculated with the use of the anova function.

To examine the selective pressures acting on amino acid variants, we cal-

culated the mean derived allele frequency for synonymous and for nonsyn-

onymous SNPs for each gene. To assess whether they differed, a Wilcoxon

matched-pairs signed-rank test was performed on the two paired-value lists

with the use of the wilcox.test function in R, with only genes that had both

synonymous and nonsynonymous SNPs in the sample considered.

Estimates of g and u

We estimated two selection parameters, g and u, by using a Bayesian

method (mkprf) that relies on the entries of a McDonald-Kreitman Table

[11]. The parameter g = 2Nes (in which Ne is the effective population size)

is the scaled selection coefficient acting on homozygous carriers of amino

acid mutations. In turn, u = log(qR/qS) is a measure of constraint on amino

acid mutations (cf [30]): qR and qS are estimates of the effective rate of re-

placement and silent mutations, so that their ratio indicates what fraction

of amino acid mutations can contribute to polymorphism (i.e., is not strongly

deleterious).

The mkprf approach uses the number of synonymous and nonsynony-

mous polymorphisms with humans and the number of synonymous and

nonsynonymous fixed differences between species (here, human and rhe-

sus macaque). Attractive features of the method are that it uses information

from polymorphism and divergence jointly and that it depends on only the

number of polymorphisms, not their frequency, and so should be insensitive

to possible ascertainment-bias effects on the frequency spectrum of genes

associated with complex disease. We relied on the polymorphism data from

the Applera project, pooling population samples; more details are provided

in the Supplemental Data. Specifically, we summed the entries of the MK

tables for all genes within a category (e.g., all genes associated with com-

plex-disease susceptibility), excluding X-linked genes (see [11] for details).

This approach assumes a fixed selection coefficient across mutations and

all genes, effectively averaging over the distribution of selective effects of

mutations that contribute to polymorphism or divergence. This highly

restrictive assumption makes the absolute value of g difficult to interpret;

however, its ordering across categories is meaningful for a wide variety of

distributions of selection coefficients (see Supplemental Data). Moreover,

g can also be thought of not as a parameter estimate but as a summary of

the pooled MK tables for each category, thereby capturing information sim-

ilar to the odds ratio (see Figure 3). For all genes, we assumed a dominance

coefficient h = ½, but we note that, other than in the case of overdominance

(i.e., h > 1), this assumption does not affect estimates of the selection

coefficients acting on homozygotes [17].

The Allele-Frequency Spectrum of Genes Associated

with Complex Disease

In the analysis of the allele frequency in genes associated with complex dis-

orders, it is important to note a number of ascertainment biases. Indeed,

genes known to influence complex-disease risk have been identified mainly

by association studies, so they are likely to harbor at least one common

allele [5]. We ran resampling analyses to assess the possible effect of this

ascertainment bias on Tajima’s D for amino acid sites and found it to be

relatively minor (see Supplemental Data), whereas the effects on Dn/Ds

and estimates of g from the mkprf method are expected to be negligible

(see above).

A second consideration is that genes first discovered to influence com-

plex-disease risk probably have unusually large effects on the disease phe-

notype, which implies that common alleles yet to be discovered are likely to

explain a smaller proportion of the variance. If so, one might predict that the

genes yet to be discovered will be under weaker selection. This said, there

might also remain unknown genes associated with complex-disease risk

that harbor rare alleles of large effect and are relatively more conserved

than genes identified to date.

Evidence for Positive Selection in Genes Associated with Disease

Sabeti et al. (2006) [20] considered all genes previously reported to be under

positive selection and assessed whether patterns of polymorphism and di-

vergence were unusual relative to background patterns of variation in the

genome. For each gene, they reported the percentiles of the distribution

of various test statistics designed to detect signatures of selection (their
Table S4). We used their criterion, considering a gene as showing evidence

for selection if it fell in the 5% tail of at least one statistic in at least one of the

three populations. This included six genes on our list of complex-disease

genes (out of 72) but only 11 genes in hOMIM (out of 1004). We note that

the study by Sabeti et al. predates the publication of one of the best-char-

acterized cases of positive selection in a gene associated with complex

disease, TCF7L2 [28]. Moreover, the few genes in hOMIM that showed evi-

dence of selection might be unusual, given that they include HFE and

BRCA1 (which others have considered as associated with complex, rather

than Mendelian, disorders [14]), as well as genes such as G6PD and HBB,

which are known to be involved in the resistance to malaria.

Supplemental Data

Additional experimental procedures, three figures, and ten tables

are available at http://www.current-biology.com/cgi/content/full/18/12/

883/DC1/.

Acknowledgments

Thanks to G. Coop, N. Cox, A. Di Rienzo, Y. Gilad, C. Ober, G. Sella, M. Ste-

phens, J. D. Wall, W. Wen, and especially J. Pritchard for helpful discussions

and/or comments about the manuscript. We are also grateful to the Rhesus

Macaque Genome Sequencing and Analysis Consortium in general and to

A. Siepel in particular for providing a set of human-rhesus alignments, to

K. Bullaughey and A. Fledel-Alon for help with bioinformatics, and to M.

Groat, L. Stephens, and B. Rashidi for their aid in the curation of the

OMIM database. This work was supported by an Alfred P. Sloan fellowship

in Computational Molecular Biology and by a National Institutes of Health

(NIH) grant GM79558 to M.P.; R.B. is supported by a NIH grant GM077959

to Y. Gilad.

Received: October 9, 2007

Revised: April 27, 2008

Accepted: April 30, 2008

Published online: June 19, 2008

References

1. Zwick, M.E., Cutler, D.J., and Chakravarti, A. (2000). Patterns of genetic

variation in Mendelian and complex traits. Annu. Rev. Genomics Hum.

Genet. 1, 387–407.

2. Lohmueller, K.E., Mauney, M.M., Reich, D., and Braverman, J.M. (2006).

Variants associated with common disease are not unusually differenti-

ated in frequency across populations. Am. J. Hum. Genet. 78, 130–136.

3. Di Rienzo, A. (2006). Population genetics models of common diseases.

Curr. Opin. Genet. Dev. 16, 630–636.

4. Keller, M.C., and Miller, G. (2006). Resolving the paradox of common,

harmful, heritable mental disorders: Which evolutionary genetic models

work best? Behav. Brain Sci. 29, 385–404.

5. Pritchard, J.K., and Cox, N.J. (2002). The allelic architecture of human

disease genes: Common disease-common variant.or not? Hum. Mol.

Genet. 11, 2417–2423.

6. Cohen, J.C. (2006). Genetic approaches to coronary heart disease. J.

Am. Coll. Cardiol. 48, A10–A14.

7. Kryukov, G.V., Pennachio, L.A., and Sunyaev, S.R. (2007). Most rare

missense alleles are deleterious in humans: Implications for complex

disease and association studies. Am. J. Hum. Genet. 80, 727–739.

8. Kondrashov, F.A., Ogurtsov, A.Y., and Kondrashov, A.S. (2004). Bioin-

formatical assay of human gene morbidity. Nucleic Acids Res. 32,

1731–1737.

9. Burton, P.R., Clayton, D.G., Cardon, L.R., Craddock, N., Deloukas, P.,

Duncanson, A., Kwiatkowski, D.P., McCarthy, M.I., et al.Wellcome Trust

Case Control ConsortiumAustralo-Anglo-American Spondylitis Consor-

tium (TASC) (2007). Association scan of 14,500 nonsynonymous SNPs in

four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–

1337.

10. Kondrashov, A.S., Sunyaev, S., and Kondrashov, F.A. (2002). Dobzhan-

sky-Muller incompatibilities in protein evolution. Proc. Natl. Acad. Sci.

USA 99, 14878–14883.

11. Bustamante, C.D., Fledel-Alon, A., Williamson, S., Nielsen, R., Hubisz,

M.T., Glanowski, S., Tanenbaum, D.M., White, T.J., Sninsky, J.J., Her-

nandez, R.D., et al. (2005). Natural selection on protein-coding genes

in the human genome. Nature 437, 1153–1157.

http://www.r-project.org
http://www.current-biology.com/cgi/content/full/18/12/883/DC1/
http://www.current-biology.com/cgi/content/full/18/12/883/DC1/


Selection on Human Disease Genes
889
12. Smith, N.G., and Eyre-Walker, A. (2003). Human disease genes: Patterns

and predictions. Gene 318, 169–175.

13. Huang, H., Winter, E.E., Wang, H., Weinstock, K.G., Xing, H., Goodstadt,

L., Stenson, P.D., Cooper, D.N., Smith, D., Alba, M.M., et al. (2004). Evo-

lutionary conservation and selection of human disease gene orthologs

in the rat and mouse genomes. Genome Biol. 5, R47.

14. Thomas, P.D., and Kejariwal, A. (2004). Coding single-nucleotide poly-

morphisms associated with complex vs. Mendelian disease: Evolution-

ary evidence for differences in molecular effects. Proc. Natl. Acad. Sci.

USA 101, 15398–15403.

15. Goodman, M., Porter, C., A., Czelusniak, J., Page, S.L., Schneider, H.,

Shoshani, J., Gunnell, G., and Groves, C.P. (1998). Toward a phyloge-

netic classification of primates based on DNA evidence complemented

by fossil evidence. Mol. Phylogenet. Evol. 9, 585–598.

16. Liao, B.Y., Scott, N.M., and Zhang, J. (2006). Impacts of gene essential-

ity, expression pattern, and gene compactness on the evolutionary rate

of mammalian proteins. Mol. Biol. Evol. 23, 2072–2080.

17. Williamson, S., Fledel-Alon, A., and Bustamante, C.D. (2004). Population

genetics of polymorphism and divergence for diploid selection models

with arbitrary dominance. Genetics 168, 463–475.

18. Fogel, R.W. (2005). Changes in the disparities in chronic diseases during

the course of the 20th century. Perspect. Biol. Med. 48, S150–S165.

19. Furney, S.J., Alba, M.M., and Lopez-Bigas, N. (2006). Differences in the

evolutionary history of disease genes affected by dominant or recessive

mutations. BMC Genomics 7, 165.

20. Sabeti, P.C., Schaffner, S.F., Fry, B., Lohmueller, J., Varilly, P., Shamov-

sky, O., Palma, A., Mikkelsen, T.S., Altshuler, D., and Lander, E.S. (2006).

Positive natural selection in the human lineage. Science 312, 1614–1620.

21. Jimenez-Sanchez, G., Childs, B., and Valle, D. (2001). Human disease

genes. Nature 409, 853–855.

22. Hirschhorn, J.N., Lohmueller, K., Byrne, E., and Hirschhorn, K. (2002). A

comprehensive review of genetic association studies. Genet. Med. 4,

45–61.

23. Lohmueller, K.E., Pearce, C.L., Pike, M., Lander, E.S., and Hirschhorn,

J.N. (2003). Meta-analysis of genetic association studies supports

a contribution of common variants to susceptibility to common disease.

Nat. Genet. 33, 177–182.

24. Gibbs, R.A., Rogers, J., Katze, M.G., Bumgarner, R., Weinstock, G.M.,

Mardis, E.R., Remington, K.A., Strausberg, R.L., Venter, J.C., Wilson,

R.K., et al. (2007). Evolutionary and biomedical insights from the rhesus

macaque genome. Science 316, 222–234.

25. Yang, Z. (1997). PAML: A program package for phylogenetic analysis by

maximum likelihood. Comput. Appl. Biosci. 13, 555–556.

26. Huang, X. (1994). On global sequence alignment. Comput. Appl. Biosci.

10, 227–235.

27. Voight, B.F., Adams, A.M., Frisse, L.A., Qian, Y., Hudson, R.R., and Di

Rienzo, A. (2005). Interrogating multiple aspects of variation in a full re-

sequencing data set to infer human population size changes. Proc. Natl.

Acad. Sci. USA 102, 18508–18513.

28. Helgason, A., Palsson, S., Thorleifsson, G., Grant, S.F., Emilsson, V.,

Gunnarsdottir, S., Adeyemo, A., Chen, Y., Chen, G., Reynisdottir, I.,

et al. (2007). Refining the impact of TCF7L2 gene variants on type 2

diabetes and adaptive evolution. Nat. Genet. 39, 218–225.

29. Tajima, F. (1989). Statistical method for testing the neutral mutation

hypothesis by DNA polymorphism. Genetics 123, 585–595.

30. Gilad, Y., Bustamante, C.D., Lancet, D., and Paabo, S. (2003). Natural

selection on the olfactory receptor gene family in humans and chimpan-

zees. Am. J. Hum. Genet. 73, 489–501.


	Natural Selection on Genes that Underlie Human Disease Susceptibility
	Results and Discussion
	Analysis of hOMIM Genes
	Comparison of Genes Associated with Simple versus Complex Diseases

	Experimental Procedures
	Hand-Curating OMIM
	List of Genes that Contribute to Complex-Disease Susceptibility
	GO Categories and Patho-Physiologies
	Human Coding Sequences
	Estimates of Human-Rhesus Macaque Dn/Ds
	Human Polymorphism Data
	Statistical Analyses
	Estimates of gamma and omega
	The Allele-Frequency Spectrum of Genes Associated with Complex Disease
	Evidence for Positive Selection in Genes Associated with Disease

	Supplemental Data
	Acknowledgments
	References


